# 2014 Annual Report

# **Evanston Utilities Department**

Serving the Community for 140 Years





In 2014, Evanston marked the 100-year anniversary of the City's first full-scale water treatment plant. Evanston has been supplying Lake Michigan water to the community since 1874, but for the first 37 years the water was simply pumped from the lake to customers with no treatment. As Evanston grew, and pollution of the lake increased, waterborne disease began to plague the community.

In 1911, Evanston was one of only a handful of water utilities across the country that instituted disinfection using chlorine. This lessened the waterborne disease outbreaks but did not stop them. Evanston leaders determined the only way to ensure the safety of the drinking water was to build a full-scale water treatment plant using both filtration and disinfection.

The original water treatment plant, which is still in operation today, was completed in 1914. The year 2014



Community members viewing historical displays at the July 2014 open house.



Mayor Tisdahl addresses the crowd at the July 2014 open house.

marked 100 years of clean, safe, and reliable drinking water in Evanston. The City held an open house at the water treatment plant in July 2014 to commemorate this achievement and celebrate all that safe drinking water makes possible in our society.

**Cover photos**, **clockwise from top left**: the first Evanston Water Works (pumping station), built in 1874; the original six filters in Evanston's first water treatment plant, completed in 1914; bringing materials in for construction of the 1914 filtration plant by horse and cart; and the coal-fired Holly steam engine that powered Evanston's water pumps until the 1940s.



cityofevanston.org/utilities



# **Table of Contents**

### Introduction

| Utilities Department Annual Accomplishments and Performance Measures | 1  |
|----------------------------------------------------------------------|----|
| Water Treatment Plant Data                                           | 5  |
| Water Treatment Schematic                                            | 6  |
| Water Works Improvements                                             | 7  |
| Service Area and Population                                          | 10 |
| Pumpage to Distribution                                              | 11 |
| Water Revenues                                                       | 12 |
| Water Operating and Maintenance Expenses                             | 13 |
| Employee Profile and Safety                                          | 14 |

### Pumping

| Monthly and Average Daily Pumpage    | 16 |
|--------------------------------------|----|
| Annual Pumpage                       | 17 |
| Average Daily per Capita Consumption | 18 |
| Maximum Day and Peak Hour Pumpage    | 19 |
| Maximum Pumpage and Demand Days      | 20 |
| Energy Costs                         | 21 |

### Filtration

| Chemical Treatment: Chemicals Used and Cost                          | 24 |
|----------------------------------------------------------------------|----|
| Annual Chemical Costs                                                | 25 |
| Filter Operations                                                    | 26 |
| Bacteriological Water Analysis                                       | 27 |
| Taste & Odor, Turbidity, Temperature and Fluoride                    | 28 |
| Chlorine Residual                                                    | 29 |
| pH, Alkalinity and Hardness                                          | 30 |
| Detected Substances: 2014 Water Quality Data                         | 31 |
| Non-Detected Contaminants: 2014 Water Quality Data                   | 33 |
| Lead and Copper Statement                                            | 35 |
| Definitions and General Explanations for Use with Water Quality Data | 36 |

### Distribution

| Fire Hydrants: System Data and Maintenance                    | 38 |
|---------------------------------------------------------------|----|
| Water Distribution System Valves: System Data and Maintenance | 39 |
| Water Mains: System Data and Maintenance                      | 40 |
| Water Services: System Data and Maintenance                   | 41 |
| Breakdown of In-House Maintenance Costs                       | 41 |
| Water Main Improvements                                       | 42 |
| Leak Detection Program                                        | 43 |
| Cross Connection Control                                      | 44 |

### Metering

| Advanced Metering Infrastructure (AMI) System | 46 |
|-----------------------------------------------|----|
| Transmitter Tower Locations                   | 47 |
| Water Meter Inventory                         | 48 |
| Water Rates for Evanston Customers            | 48 |
| Water Customer Classes and Metered Usage      | 49 |
| Water Usage Breakdown for Evanston Customers  | 50 |

#### Sewer

| Sewer Revenues                                | 52 |
|-----------------------------------------------|----|
| Sewer Operating and Maintenance Expenses      | 53 |
| Major Combined Sewer System                   | 54 |
| Major Relief Sewer System                     | 55 |
| Major Storm Sewer System                      | 56 |
| Sewer Mains: System Data and Maintenance      | 57 |
| Length of Sewer Mains by Type and Diameter    | 58 |
| Sewer Structures: System Data and Maintenance | 59 |
| Breakdown of In-House Maintenance Costs       | 60 |
| Sewer Mains Rehabilitated (Lined)             | 61 |

# Utilities Department Annual Accomplishments and Performance Measures

#### Introduction

The Utilities Department manages water and sewer operations for the City of Evanston. The Water Division is responsible for operation and maintenance of the Water Treatment Plant, which supplies water to over 365,000 people in Evanston and five other communities. The Water Division also operates and maintains more than 157 miles of water mains, 2,000 valves, and 1,400 fire hydrants in the Evanston distribution system. This division also manages leak detection program and cross connection control programs to minimize water loss and ensure the safety of the community's water supply.

The Sewer Division is responsible for operation and maintenance of the sewer conveyance systems in Evanston, including a combined sewer system, a relief combined sewer system, and a storm sewer system. These systems are comprised of over 200 miles of sewer mains ranging in size from 6-inch diameter to 120-inch diameter, including over 5,500 manhole structures and over 9,000 drainage structures.

The Utilities Department also coordinates with ComEd, Nicor, AT&T, and other private utilities on behalf of Evanston residents and businesses to help resolve service issues and improvement needs.

The Department's total FY 2014 budget was approximately \$45.5 million (\$32.1 million Water Fund and \$13.4 million Sewer Fund). Utilities Department staff includes 54.5 full-time equivalents (FTEs).

|                                              | 2011    | 2012    | 2013    | 2014    |
|----------------------------------------------|---------|---------|---------|---------|
| Total Water Pumped (millions of gallons)     | 13,870  | 14,547  | 13,793  | 13,428  |
| Fire Hydrants Repaired or Replaced           | 217     | 321     | 197     | 330     |
| Water Main Valves Repaired or Replaced       | 59      | 64      | 85      | 53      |
| Water Main Replaced or Rehabilitated (miles) | 1.4     | 1.8     | 1.8     | 1.7     |
| Large Diameter Sewer Rehabilitated (feet)    | 0       | 0       | 8,249   | 5,356   |
| Small Diameter Sewer Rehabilitated (feet)    | 5,595   | 8,321   | 7,829   | 6,703   |
| Sewer Mains Inspected (feet of pipe)         | 106,856 | 103,678 | 101,424 | 97,347  |
| Sewer Mains Cleaned (feet of pipe)           | 264,738 | 248,311 | 187,966 | 151,091 |
| Sewer Structures Repaired or Replaced        | 108     | 123     | 92      | 76      |

#### Year-to-Year Utilities Department Comparables

#### 2014 Major Accomplishments

#### Major Water Treatment Facility Improvements

Began installation of a heating system on the 48" diameter lake water intake, which prevents anchor ice accumulation in the winter. Anchor ice can block a water plant intake, and nearly led to full shutdown of Evanston's water plant in 2009. This project, along with a similar project completed for the 54" diameter intake in 2010, will ensure the reliability of our water supply.

#### Meter and Billing Improvements

Improved the reliability of the water meter reading system and water billing system by completing the Automated Meter Information (AMI) project. Additionally, a new online water management portal was created allowing customers to monitor their water usage in real time.

Enhanced the accuracy of finished water metering by replacing the 65-yearold Venturi meter on the primary feeder main to Evanston and Skokie with a more accurate magnetic flow meter. Combined with improvements on the customer metering side, this project significantly improved water-use accounting and aided in water loss reduction efforts.

#### Rehabilitation of Large Diameter Sewers

Rehabilitated 5,365 feet of large diameter sewers, ranging in size from 36inch to 72-inch diameter, using the cured-in-place pipe (CIPP) lining process. This work was part of a multi-year project to renew aging trunk sewers throughout Evanston.

#### Water Supply Expansion

Continued meeting with potential wholesale water customers, and partnered with Morton Grove, Niles, Park Ridge, and Glenview to jointly fund an updated water supply transmission main study. The report developed an opinion of probable construction cost, defined potential transmission main routes for this new potential set of wholesale customers, established water demands, determined appropriate pipe diameters, and developed an allocation of costs among the partner communities and agencies.

#### Loans and Grants

Finalized and submitted loan application documents for the 48-inch diameter intake rehabilitation project (\$1.9 million) and for large diameter sewer rehabilitation (\$275,000). Submitted preliminary loan application documents for projects proposed in 2014, including water plant reliability improvements, replacement of the finished water storage tank, rehabilitation of the 30-inch diameter water feeder main to downtown Evanston, and additional large diameter sewer rehabilitation projects.

#### Safety Improvements

Created an electrical safety and operations training program for all staff at the water treatment plant.

#### Treated Water Storage Study

Completed a long-term master plan for maintaining and replacing aging treated water storage tanks at the water treatment plant.

#### 2015 Major Goals and Initiatives

#### Maintain High Quality of Services

Be a leader in the public drinking water industry by providing high quality to over 365,000 customers in six communities, including vigilantly monitoring the quality and quantity of water provided to our customers.

#### Major Water Treatment Facility Improvements

Assure the quality and reliability of the potable water supply by completing major water treatment plant improvements including chemical feed and treatment process reliability improvements, and initiation of finished water storage improvements to address structural deterioration of clearwells built in 1914-1934.

#### Water Distribution and Metering Improvements

Complete other major distribution system improvements including repair and repainting of the City's two standpipes. The Advanced Meter Information project will also be completed with the launch of a water management portal, where customers can monitor their real-time water usage, receive leak alerts, and track historical water usage.

#### Water Supply Expansion

Continue to develop and implement a strategy to expand Evanston's wholesale water customer base, including ongoing negotiations with Lincolnwood, as well as continued meetings with other individual communities, the Northwest Water Commission, and Northwest Suburban Municipal Joint Action Water Agency (NSMJAWA) on potential transmission main and water plant improvements under various scenarios.

#### Main Replacement and Improvement

Improve water distribution system reliability and reduce water loss by expanding on the current water main replacement and water main leak detection programs. Goals are to supplement water main replacement with water main lining where feasible, to improve upon our historical 1% annual water main renewal rate; and to survey the entire distribution system for leaks on an annual basis.

#### Coordination for Efficient Project Funding

Coordinate capital improvement projects with the Public Works Department and with TIF District improvement projects to ensure cost-effective and efficient use of capital

improvement funding.

#### Design and Funding for Large Diameter Sewer Rehabilitation

Perform engineering design and secure state low interest loan funding for two additional large diameter sewer rehabilitation projects scheduled for 2016 and 2017.

#### Continue Small Diameter Sewer Rehabilitation

Continue the annual small diameter sewer CIPP rehabilitation program at a rate of at least 1% of the combined sewer system rehabilitated per year.

#### Continue Coordination with Street Resurfacing Program

Coordinate inspection and repair of sewer mains and drainage structures in advance of the street resurfacing program.

#### Continue Preventative Measures for Sewer Mains

Continue preventative maintenance cleaning and inspection of sewer mains and drainage structures.

#### Combined and Storm Sewer Inspections

Inspect combined and storm sewer outfalls monthly in accordance with Illinois Environmental Protection Agency regulatory requirements.

#### Increase Stormwater Management Initiatives

Increase stormwater management initiatives in compliance with requirements for National Pollution Discharge Elimination System (NPDES) permit and Municipal Separate Storm Sewer System (MS4) permit. This includes increased use of green infrastructure measures on public improvement projects, such as permeable pavement and bioinfiltration areas.

### **Water Treatment Plant Data**

#### Intakes

36/42" – 5,946' long, 28' deep 48" – 5,300' long, 28' deep 54" – 5,340' long, 28' deep

#### Suction Wells

- 2 22' diameter x 74' deep with traveling screens
- 1 20' diameter x 52.5' deep

#### Low Lift Pumps

2 – 30 mgd, electric motor driven
3 – 15 mgd, dual drive, electric/natural gas
1 – 30 mgd, dual drive, electric/natural gas
Total capacity of 135 mgd
Emergency standby capacity of 75 mgd

#### Flash Mix Basin

14.75' x 14.75' x 31.58' deep
Single vertical shaft mixer
Counter-flow rotation
Application point for alum, chlorine, fluoride, polymer, and carbon
Rated capacity 108 mgd w/ partial bypass

#### **Slow Mix/Settling Basins**

Four double-deck basins with series flow

- 2 2.865 MG capacity, five 60' shafts per basin, 4 paddle wheel sections
- 2 4.3 MG capacity, eight 60' shafts per basin, 4 paddle wheel sections
- Retention time at 108 mgd (flash mix capacity) is 3 hours and 11 minutes

#### **Treated Water Elevated Storage**

South – 5.0 MG, 640 Hartrey Avenue North – 7.5 MG, 2536 Gross Point Road

#### Filters

Anthracite-capped rapid sand filters 12 - 3.19 mgd, 738 ft<sup>2</sup> each, surface

loading rate of 3 gpm/ft<sup>s</sup> 12 – 8.01 mgd, 1,391 ft<sup>2</sup> each, surface loading rate of 4 gpm/ft<sup>2</sup> Total rated capacity of 134 mgd Automatic surface and backwash system on all 24 filters

#### **Treated Water Ground Storage**

8 clearwells beneath filters – 4.4 MG total 1 clearwell beneath NU parking lot – 5.0 MG Total Plant Storage – 9.4 MG

#### **High Lift Pumps**

1 – 15 mgd, electric motor driven

- 2 25 mgd, electric motor driven
- 1 10 mgd, dual drive, electric/natural gas
- 2 15 mgd, dual drive, electric/natural gas
- 1 22 mgd, dual drive, electric/natural gas
- 1 20 mgd, natural gas engine

Total capacity of 147 mgd Emergency standby capacity of 82 mgd

#### Wash Water Pumps

2 – 20 mgd 2 – 10 mgd

#### **Detention Tank**

80' x 192' x 12' deep, divided in 2 sections Total capacity of 1.1 MG 1 – submersible sludge pump at 700 gpm

Legend: MG = million gallons; mgd = million gallons per day; gpm = gallons per minute

### **Water Treatment Schematic**



### Water Works Improvements (1874 to 2014)

- 1874 Evanston Community Water System established
- 1913 Constructed 12 mgd filter plant
- **1923** Expanded filter plant to 24 mgd
- 1934 Constructed 5.0 million gallon underground reservoir at plant site
- 1944 Contracted to supply water to Skokie
- **1949** Constructed high lift (finished water) pumping station Expanded filter plant to 48 mgd Constructed slow mix basins 1 and 2
- **1956** Constructed 48" intake and low lift (raw water) pump station Constructed 36" feeder main to Skokie
- **1964** Expanded filter plant to 72 mgd Constructed additional 36" feeder main to Skokie Constructed slow mix basins 3 and 4
- **1971** Installed 20 mgd high lift pump and natural gas engine
- **1974** Constructed filter wash water detention basin, 1.1 MG capacity
- **1976** Constructed 54" intake, 5,340 feet in length Extended 48" intake to 5,300 feet in length
- 1981 Constructed material storage building at south water tank yard Installed 3 new boilers (2 – 50 HP and 1 – 20 HP) Replaced 5 kV switchgear and motor starter equipment for low lift pumps Upgraded slow mix equipment in basins 1 and 2
- **1982** Installed two 30 mgd low lift pumps Replaced 5 kV motor starter center for high lift pumps
- **1983** Constructed new chemical building and chemical feed system Installed a 500 kW emergency generator Rehabilitated six 1914 and six 1924 filters to increase rate to 3 MGD per filter
- **1984** Constructed 5 MG standpipe with booster station to replace the 1.5 MG elevated tank in southwest Evanston

- 1985 Began selling water to Northwest Water Commission at the rate of 10 MGD Installed dual drive 22 MGD high lift pump and new piping Installed two 48" diameter pipes from reservoir to east side of high lift suction tunnel Completed system automation which provided a microprocessor-based digital control system to perform control and supervisory functions
- **1986** Constructed a 7.5 MG standpipe with booster station to replace the 1.0 MG elevated tank in northwest Evanston Began pumping to Northwest Water Commission reservoir in Des Plaines
- **1988** Installed two 700 gpm sludge pumps with automatic samplers in the settling basins along with 3,400 feet of 8" diameter sludge main from the Filtration Plant to the MWRD interceptor at Lincoln Street and Asbury Ave
- **1989** Completed filter control upgrade to microprocessors
- **1990** Turndown and extension of 48" raw water intake lines into North and South suction wells Upgraded west filter influent valves from 16" to 24"
- **1991** Upgraded electrical substation and switchgear to 3,750 kVA Upgraded west filter effluent piping
- 1992 Installed chlorine feed system to intakes for zebra/quagga mussel control Installed a 15 MGD high lift pump to replace one 8 MGD pump and one 6 MGD pump Installed two 48" diameter butterfly valves on suction piping from reservoir to high lift suction wells Installed hydrofluosilicic acid tank and feed system in garage #6 Installed 60" diameter flash mix bypass pipe to influent duct of settling basins Replaced slow mix equipment and flushing system in basins 3 and 4 Replaced 480 V filter plant switchgear Installed blended phosphate system and initiated blended phosphate treatment for corrosion control
- 1994 Constructed new chemical storage and handling building
- **1995** Replaced Low Lift Pump #6 gasoline engine with natural gas engine
- **1996** Replaced 1949 filter building roof Constructed loading dock on 1913 filter building
- **1997** Replaced High Lift Pump #2 gasoline with a natural gas engine
- **1998** Replaced Low Lift Pump #5 and #7 dual drive gasoline engines with natural gas fueled engines

- **2000** Installed individual effluent turbidimeters on all 24 filters
- **2001** Converted High Lift Pump #3 to dual drive Replaced filter bottoms and rehabbed six filters in 1948 filter addition
- **2002** Completed installation of automatic fixed radio meter reading system Replaced effluent settling basin sluice gates with rectangular butterfly valves
- **2003** Installed uninterruptible power supply to filtration and pumping equipment
- 2004 Constructed garages east of the settling basins Constructed an access way to the chemical building from filtration division Installed a scrubber
- **2005** Replaced Low Lift Pump #4 gasoline engine with natural gas engine
- 2006 Replaced Low Lift Pump #7
- **2008** Renovated administrative offices Expanded filter shop area
- **2009** Implemented AQUAS (Harris) Utility Billing System Installed anchor ice and zebra mussel control systems in 54" intake
- **2010** Installed a 25 kW solar energy facility on the high lift pump station roof
- 2012 Rehabilitated Filters 19-24 with new media, underdrains, and backwash equipment Rehabilitated the 1963 filter building structure and roof Replaced all windows in the high lift pump station Replaced electrical switchgear in high lift pump station
- **2013** Modified electrical distribution equipment and settings on protective devices throughout the water treatment plant to reduce arc flash hazards Conducted comprehensive maintenance and evaluation of electrical Switchgears
- 2014 Replaced five roofs: Boiler Room, Low Lift Pumping Station, Chemical Building, and 1948 Filter Building (2 roofs) Replaced master flow meter on the 48" diameter feeder main to Evanston and Skokie
- Notes: MG = million gallons mgd = million gallons per day HP = horsepower kV = kilovolt kW = kilovolt kVA = kilovolt-ampere

### **Service Area & Population**

|                            | Area           | 2014     |
|----------------------------|----------------|----------|
|                            | (Square Miles) | Persons* |
| Evanston                   | 7.8            | 75,570   |
| Skokie                     | 10             | 65,176   |
| NORTHWEST WATER COMMISSION |                |          |
| Arlington Heights          | 16.6           | 75,994   |
| Buffalo Grove              | 9.5            | 41,778   |
| Palatine                   | 13.6           | 69,350   |
| Wheeling                   | 8.7            | 38,015   |
| Total Served               | 66.2           | 365,883  |

\* U.S. Census Bureau, 2013 Estimate



### **Pumpage to Distribution**





### Water Revenues\*

|                         | 2013         | 2014         |
|-------------------------|--------------|--------------|
| Evanston Water Sales    | \$5,947,632  | \$6,357,400  |
| Skokie Water Sales      | \$2,772,424  | \$2,913,000  |
| NWC Water Sales         | \$5,183,425  | \$5,200,000  |
| Debt Proceeds           | \$2,043,779  | \$4,300,000  |
| Miscellaneous Revenue** | \$853,222    | \$637,797    |
| Total Water Revenue     | \$16,800,481 | \$19,410,211 |



\* Financial data are based on actual expenses and do not include audit adjustments such as depreciation and inventory. For audited financial records, see the Comprehensive Annual Financial Report for the City of Evanston, http://www.cityofevanston.org/transparency/budget-financial-reports/.

\*\* Miscellaneous Revenue includes cross connection control fees, investment earnings, property sales and rentals, fees, outside work, grants, development fees, phosphate sales, and merchandise sales.

### Water Operating & Maintenance Expenses\*

|                            | 2013         | 2014         |
|----------------------------|--------------|--------------|
| General Support            | \$960,028    | \$898,468    |
| Pumping                    | \$2,226,781  | \$2,172,119  |
| Filtration                 | \$2,435,092  | \$2,572,444  |
| Distribution               | \$1,389,136  | \$1,450,368  |
| Meter Maintenance          | \$249,474    | \$272,565    |
| Other Operating Expenses** | \$4,484,334  | \$4,670,151  |
| Total                      | \$11,744,845 | \$12,036,115 |



\* Financial data are based on actual expenses and do not include audit adjustments such as depreciation and inventory. For audited financial records, see the Comprehensive Annual Financial Report for the City of Evanston, http://www.cityofevanston.org/transparency/budget-financial-reports/.

\*\*Other Operating Expenses include capital outlay, interfund transfers (general and insurance), and other operating expenses.

### **Employee Profile and Safety**

|                | Employee              |
|----------------|-----------------------|
| Section        | Full-Time Equivalents |
| Administration | 5.0                   |
| Pumping        | 12.0                  |
| Filtration     | 14.0                  |
| Distribution   | 11.0                  |
| Sewer          | 11.0                  |
| Meter          | 1.5                   |
| Total          | 54.5                  |

| Section              | Number of AFMD*<br>Beginning of Year | Number of<br>Accidents | Highest consecutive<br>AFMD achieved | Date Highest<br>AFMD Achieved | Number of AFMD<br>End of Year |
|----------------------|--------------------------------------|------------------------|--------------------------------------|-------------------------------|-------------------------------|
| Pumping              | 393.0                                | 2                      | 2,084.5                              | 9/28/2014                     | 257.0                         |
| Filtration           | 2,071.5                              | 2                      | 2,584.5                              | 10/31/2014                    | 2,584.5                       |
| Distribution & Sewer | 2,644.5                              | 3                      | 3,276.5                              | 8/6/2014                      | 1,100.5                       |

\* AFMD = Accident Free Man Days

# Pumping

Evanston's Pumping Division manages the City's three Lake Michigan water supply intakes, pumping of raw water to the start of the water treatment process; pumping of treated water to retail customers in Evanston as well as wholesale customers; and operation and maintenance of Evanston's treated water storage facilities and remote water pumping stations. This division also monitors water storage tanks in the Village of Skokie, as well as controlling the rate of water supply to the Northwest Water Commission.



High Lift Pumping Station at the Evanston Water Treatment Plant

There is at least one pump operating at the Evanston Water Treatment Plant at all times, to ensure that a sufficient quantity of water is always available for public consumption and firefighting. There is always at least one water operator present at the Pumping Station to control water supply and pressure and respond to emergencies.

Evanston has been pumping drinking water from the site of the existing water treatment plant on Lincoln Street since 1874. The original "water works" consisted of a coal-fired steam engine and a single pump with a capacity of 2 million gallons per day. Construction of a pumping station to serve the entire City drastically improved Evanston's ability to fight fires and allowed the City to reliably deliver Lake Michigan water to homes and businesses on demand for the first time.



Evanston's original pumping station in 1874

|        | Lake       | Wash     | Net        | Finished   |           | Pumpage To | )         |
|--------|------------|----------|------------|------------|-----------|------------|-----------|
|        | Water      | Water    | Raw Water  | Water      |           |            |           |
| Month  | Pumpage    | Recycled | Pumpage    | Pumpage    | Evanston  | Skokie     | N.W.C.    |
| Jan-14 | 1,145.485  | 16.593   | 1,162.077  | 1,153.809  | 190.196   | 243.087    | 720.526   |
| Feb-14 | 1,056.291  | 15.540   | 1,071.831  | 1,061.347  | 220.057   | 226.361    | 614.929   |
| Mar-14 | 1,098.181  | 16.266   | 1,114.447  | 1,104.761  | 228.488   | 234.392    | 641.881   |
| Apr-14 | 1,048.631  | 15.107   | 1,063.738  | 1,048.992  | 207.566   | 214.930    | 626.496   |
| May-14 | 1,169.293  | 27.892   | 1,197.185  | 1,158.987  | 249.615   | 219.611    | 689.761   |
| Jun-14 | 1,185.355  | 25.809   | 1,211.164  | 1,180.896  | 228.777   | 249.667    | 702.452   |
| Jul-14 | 1,235.790  | 29.300   | 1,265.090  | 1,237.408  | 234.232   | 262.122    | 741.054   |
| Aug-14 | 1,269.960  | 26.089   | 1,296.049  | 1,259.201  | 262.028   | 252.906    | 744.267   |
| Sep-14 | 1,112.105  | 18.128   | 1,130.233  | 1,117.992  | 240.793   | 230.180    | 647.019   |
| Oct-14 | 1,078.866  | 17.761   | 1,096.627  | 1,070.410  | 236.404   | 218.424    | 615.582   |
| Nov-14 | 1,000.469  | 14.735   | 1,015.203  | 1,008.242  | 210.512   | 204.544    | 593.186   |
| Dec-14 | 1,016.447  | 16.327   | 1,032.774  | 1,025.935  | 211.311   | 210.124    | 604.500   |
| Total  | 13,416.872 | 239.547  | 13,656.419 | 13,427.979 | 2,719.978 | 2,766.348  | 7,941.653 |

### 2014 Monthly Pumpage (MG)

# 2014 Average Day Pumpage (MGD)

|         | Lake     | Wash     | Net       | Finished |          | Pumpage To | )      |
|---------|----------|----------|-----------|----------|----------|------------|--------|
|         | Water    | Water    | Raw Water | Water    |          |            |        |
| Month   | Pumpage* | Recycled | Pumpage   | Pumpage  | Evanston | Skokie     | N.W.C. |
| Jan-14  | 36.951   | 0.535    | 37.486    | 37.220   | 6.135    | 7.842      | 23.243 |
| Feb-14  | 37.725   | 0.555    | 38.280    | 37.905   | 7.859    | 8.084      | 21.962 |
| Mar-14  | 34.400   | 0.525    | 35.950    | 35.637   | 7.371    | 7.561      | 20.706 |
| Apr-14  | 33.939   | 0.504    | 35.458    | 34.966   | 6.919    | 7.164      | 20.883 |
| May-14  | 37.719   | 0.487    | 34.314    | 37.387   | 8.052    | 7.084      | 22.250 |
| Jun-14  | 39.512   | 0.860    | 40.372    | 39.363   | 7.626    | 8.322      | 23.415 |
| Jul-14  | 39.864   | 0.945    | 40.809    | 39.916   | 7.556    | 8.456      | 23.905 |
| Aug-14  | 40.966   | 0.842    | 41.808    | 40.619   | 8.453    | 8.158      | 24.009 |
| Sep-14  | 37.070   | 0.604    | 37.674    | 37.266   | 8.026    | 7.673      | 21.567 |
| Oct-14  | 34.802   | 0.573    | 35.375    | 34.529   | 7.626    | 7.046      | 19.857 |
| Nov-14  | 33.349   | 0.491    | 33.840    | 33.608   | 7.017    | 6.818      | 19.773 |
| Dec-14  | 32.789   | 0.527    | 33.315    | 33.095   | 6.816    | 6.778      | 19.500 |
| Average | 36.759   | 0.656    | 37.415    | 36.789   | 7.452    | 7.579      | 21.758 |

Note: "Pumpage to Evanston" includes process and domestic water uses at the water treatment plant.

# **Annual Pumpage (MG)**

|      |            |            | Total      | Finished   |           | Pumpage To |           |
|------|------------|------------|------------|------------|-----------|------------|-----------|
|      | Lake Water | Wash Water | Raw Water  | Water      |           |            |           |
| Year | Pumpage    | Recycled   | Pumpage    | Pumpage    | Evanston  | Skokie     | N.W.C.    |
| 2014 | 13,416.872 | 239.547    | 13,656.419 | 13,427.979 | 2,719.978 | 2,766.348  | 7,941.653 |
| 2013 | 13,925.102 | 247.609    | 14,172.711 | 13,814.461 | 2,930.278 | 2,787.256  | 8,096.927 |
| 2012 | 14,817.637 | 322.302    | 15,110.465 | 14,627.115 | 2,939.417 | 3,068.004  | 8,619.694 |
| 2011 | 13,939.618 | 212.426    | 14,152.042 | 13,941.167 | 2,991.848 | 2,866.652  | 8,082.667 |
| 2010 | 14,087.849 | 218.251    | 14,306.100 | 14,268.257 | 2,701.569 | 3,094.554  | 8,472.134 |
| 2009 | 14,363.047 | 193.841    | 14,556.888 | 14,350.335 | 3,140.898 | 2,829.824  | 8,379.613 |
| 2008 | 14,872.552 | 134.595    | 15,007.147 | 14,693.877 | 3,142.816 | 2,961.341  | 8,589.720 |
| 2007 | 15,905.381 | 192.088    | 16,097.469 | 15,771.451 | 3,207.422 | 3,564.781  | 8,999.248 |
| 2006 | 15,332.651 | 160.528    | 15,493.179 | 15,174.631 | 2,950.699 | 3,329.305  | 8,894.627 |
| 2005 | 16,823.362 | 184.937    | 17,008.299 | 16,634.025 | 3,365.076 | 3,544.779  | 9,724.170 |



### **Average Daily per Capita Consumption**

|      | Evar       | nston      | Sko        | okie       | NWC        |            | Total      |            |
|------|------------|------------|------------|------------|------------|------------|------------|------------|
|      |            | Per Capita |            | Per Capita |            | Per Capita |            | Per Capita |
| Year | Population | Use (gpcd) |
| 2014 | 75,570     | 99         | 65,176     | 116        | 225,137    | 97         | 365,883    | 101        |
| 2013 | 75,570     | 106        | 65,176     | 117        | 225,137    | 99         | 365,883    | 103        |
| 2012 | 74,486     | 105        | 64,784     | 130        | 222,802    | 106        | 362,072    | 110        |
| 2011 | 74,486     | 107        | 64,784     | 121        | 222,802    | 99         | 362,072    | 105        |
| 2010 | 74,486     | 97         | 64,784     | 131        | 222,802    | 104        | 362,072    | 107        |
| 2009 | 74,360     | 110        | 63,333     | 122        | 221,364    | 104        | 359,057    | 108        |
| 2008 | 74,360     | 114        | 63,333     | 128        | 221,364    | 106        | 359,057    | 112        |
| 2007 | 74,360     | 116        | 63,333     | 154        | 221,364    | 111        | 359,057    | 120        |
| 2006 | 74,360     | 107        | 63,633     | 143        | 221,364    | 110        | 359,357    | 115        |
| 2005 | 74,360     | 122        | 63,633     | 153        | 221,364    | 120        | 359,357    | 126        |

### **Maximum Pumpage to Distribution**

|      | Max Day | Peak Hour | Peak Hour |
|------|---------|-----------|-----------|
|      | Pumpage | Pumpage   | Pumpage   |
|      | Volume  | Rate      | Volume    |
| Year | (MG)    | (MGD)     | (MG)      |
| 2014 | 48.907  | 55.848    | 2.327     |
| 2013 | 56.946  | 72.072    | 3.003     |
| 2012 | 69.210  | 85.680    | 3.570     |
| 2011 | 66.096  | 75.144    | 3.131     |
| 2010 | 57.020  | 89.520    | 3.730     |
| 2009 | 58.94   | 67.440    | 2.810     |
| 2008 | 57.478  | 69.480    | 2.895     |
| 2007 | 65.997  | 70.632    | 2.943     |
| 2006 | 65.961  | 70.248    | 2.927     |
| 2005 | 80.381  | 88.848    | 3.702     |

Historical Maximum Day Pumpage: 95.154 MG on July 7, 1989



### **Maximum Day and Peak Hour Pumpage**





Water and Sewer 2014 Annual Report

# Maximum Pumpage Days (MGD)

|      | Maximum Day Pumpage To |             |             |             |  |  |  |  |
|------|------------------------|-------------|-------------|-------------|--|--|--|--|
| Year | Distribution           | Evanston    | Skokie      | NWC         |  |  |  |  |
| 2014 | August 4th             | August 15th | August 4th  | August 4th  |  |  |  |  |
| 2014 | 48.907                 | 9.875       | 10.87       | 30.871      |  |  |  |  |
| 2013 | August 28th            | August 28th | August 28th | August 27th |  |  |  |  |
| 2013 | 56.946                 | 12.585      | 11.209      | 33.374      |  |  |  |  |
| 2012 | July 17th              | July 17th   | July 17th   | July 6th    |  |  |  |  |
| 2012 | 69.210                 | 18.580      | 13.579      | 43.775      |  |  |  |  |
| 2011 | July 18th              | July 18th   | July 18th   | July 19th   |  |  |  |  |
| 2011 | 66.096                 | 12.614      | 13.724      | 40.820      |  |  |  |  |
| 2010 | July 17th              | July 29th   | August 20th | July 19th   |  |  |  |  |
| 2010 | 57.020                 | 13.643      | 12.957      | 34.661      |  |  |  |  |
| 2000 | August 14th            | August 13th | August 14th | August 6th  |  |  |  |  |
| 2009 | 58.940                 | 13.992      | 11.495      | 34.725      |  |  |  |  |
| 2008 | July 30th              | July 30th   | July 30th   | July 29th   |  |  |  |  |
| 2000 | 57.478                 | 11.788      | 11.495      | 33.670      |  |  |  |  |
| 2007 | August 2nd             | August 2nd  | June 11th   | August 2nd  |  |  |  |  |
| 2007 | 65.997                 | 17.774      | 16.493      | 35.946      |  |  |  |  |
| 2006 | August 1st             | July 29th   | August 1st  | August 1st  |  |  |  |  |
| 2000 | 65.961                 | 14.127      | 15.236      | 37.221      |  |  |  |  |
| 2005 | June 24th              | July 17th   | June 24th   | June 24th   |  |  |  |  |
| 2005 | 80.381                 | 16.926      | 17.268      | 47.233      |  |  |  |  |

Historical Maximum Day Pumpage to Distribution: 95.154 MG on July 7, 1989

## **Energy Costs**

| Year | Total kWh  | Total<br>Cost* | Average Unit<br>Cost per kWh | kWh Per Million<br>Gallons Pumped |
|------|------------|----------------|------------------------------|-----------------------------------|
| 2014 | 10,897,123 | \$787,444      | \$0.072                      | 812                               |
| 2013 | 11,529,489 | \$779,226      | \$0.068                      | 835                               |
| 2012 | 13,706,324 | \$924,422      | \$0.067                      | 937                               |
| 2011 | 13,462,281 | \$841,245      | \$0.062                      | 966                               |
| 2010 | 12,009,162 | \$821,166      | \$0.068                      | 842                               |

#### Electric Power - Kilowatt Hours (kWh) Used

\* 2012 cost is higher than usual due to increased pumpage during a drought.

#### Natural Gas Used for Pumping and Emergency Engines\*

|      |         |              | Average Unit   |
|------|---------|--------------|----------------|
| Year | Therms  | Total Cost** | Cost per Therm |
| 2014 | 132,575 | \$86,033     | \$0.649        |
| 2013 | 129,481 | \$86,926     | \$0.671        |
| 2012 | 124,954 | \$83,901     | \$0.671        |
| 2011 | 225,100 | \$116,272    | \$0.517        |
| 2010 | 51,552  | \$32,237     | \$0.625        |

\* Includes natural gas purchase and delivery charges.

\*\* 2011 cost is elevated due to switchgear fire, which required extended emergency generator use.

#### Total Energy Cost (Electric & Gas)

|      |             | Cost Per Million |
|------|-------------|------------------|
| Year | Total Cost  | Gallons Pumped   |
| 2014 | \$873,477   | \$65.05          |
| 2013 | \$866,152   | \$62.70          |
| 2012 | \$1,008,323 | \$68.94          |
| 2011 | \$957,517   | \$68.68          |
| 2010 | \$899,264   | \$63.03          |

### **Energy Costs**





\* Energy costs increased in 2012 due to increased pumping during the summer drought.

Water and Sewer 2014 Annual Report

# Filtration

The Filtration Division manages the water treatment process, including chemical addition. sedimentation. filtration. and disinfection. This involves operation and maintenance of 5 chemical feed systems, 4 settling filters. basins, 24 and numerous pipes, valves, and instrumentation systems. There is always at least one state-certified water treatment operator at the filtration plant at all times, who monitors instrumentation and water quality testing results to ensure that the water is always safe to drink.



Filters 1 – 12 in operation at the Evanston Water Treatment Plant

This division also includes the City's Water Quality Laboratory, which monitors Evanston's drinking water for compliance with state and federal water quality regulations and completes regular reporting to the public and the Illinois Environmental Protection Agency to certify the quality of Evanston's water.

Full-scale water treatment began in Evanston in 1914. The process included settlina basins with chemical addition to allow larger contaminants to drop out of the water by gravity, filtration to remove smaller contaminants, and disinfection with chlorine. The new treatment process virtually eliminated waterborne disease in Evanston. This process was stateof-the-art at the time, and Evanston was one of the first communities in the region to adopt full-scale water treatment with rapid sand filtration. Though only the filters from the 1914 treatment plant survive to this day, Evanston's water treatment process still follows the same steps.



Filters 1 – 12, photo taken in 1924

### **Chemical Treatment: Chemicals Used and Costs**

|        | Chemic      | cal Feed (II | os/MG) |                    |          |           |            |
|--------|-------------|--------------|--------|--------------------|----------|-----------|------------|
| -      | Avg         | Max          | Min    | Unit               | Pounds   | Total     | Cost per   |
|        | Daily       | Day          | Day    | Cost               | per Year | Cost      | MG Treated |
| Alumir | num Sulfa   | ite          |        |                    |          |           |            |
| 2014   | 48.1        | 90.3         | 39.4   | \$447.28 / dry ton | 653,896  | \$146,237 | \$10.71    |
| 2013   | 54.8        | 97.2         | 39.5   | \$447.28 / dry ton | 770,838  | \$172,390 | \$12.16    |
| 2012   | 55.9        | 101.6        | 30.2   | \$447.28 / dry ton | 830,624  | \$185,761 | \$12.27    |
| 2011   | 63.0        | 103.8        | 39.6   | \$413.87 / dry ton | 870,836  | \$181,138 | \$12.80    |
| 2010   | 59.0        | 103.8        | 39.3   | \$400.10 / dry ton | 830,688  | \$166,179 | \$11.62    |
| Chlori | ne          |              |        |                    |          |           |            |
| 2014   | 11.7        | 18.4         | 8.1    | \$365.00 / ton     | 161,480  | \$29,470  | \$2.16     |
| 2013   | 12.2        | 17.9         | 7.6    | \$365.00 / ton     | 176,190  | \$32,155  | \$2.27     |
| 2012   | 12.0        | 20.0         | 7.0    | \$424.50 / ton     | 187,315  | \$39,758  | \$2.63     |
| 2011   | 12.7        | 18.8         | 8.4    | \$367.50 / ton     | 180,870  | \$33,235  | \$2.35     |
| 2010   | 12.3        | 16.2         | 8.8    | \$367.50 / ton     | 176,125  | \$32,363  | \$2.26     |
| Activa | ted Carbo   | on*          |        |                    |          |           |            |
| Hydrof | fluosilic A | cid (Fluor   | ide)   |                    |          |           |            |
| 2014   | 41.0        | 45.6         | 0      | \$539.00 / ton     | 558,523  | \$150,522 | \$11.03    |
| 2013   | 37.7        | 61.1         | 29.3   | \$539.00 / ton     | 534,550  | \$144,061 | \$10.16    |
| 2012   | 36.2        | 38.2         | 33.3   | \$596.00 / ton     | 547,011  | \$163,009 | \$10.77    |
| 2011   | 38.4        | 53.0         | 26.5   | \$685.00 / ton     | 542,886  | \$185,938 | \$13.14    |
| 2010   | 40.1        | 42.8         | 37.8   | \$685.00 / ton     | 574,004  | \$196,597 | \$13.75    |
| Polym  | er          |              |        |                    |          |           |            |
| 2014   | 2.7         | 5.0          | 1.9    | \$760.00 / ton     | 36,832   | \$13,996  | \$1.03     |
| 2013   | 3.3         | 6.1          | 2.3    | \$760.00 / ton     | 46,584   | \$17,702  | \$1.25     |
| 2012   | 3.4         | 6.1          | 2.0    | \$870.00 / ton     | 51,318   | \$22,323  | \$1.47     |
| 2011   | 3.9         | 6.5          | 2.3    | \$700.00 / ton     | 53,499   | \$18,725  | \$1.32     |
| 2010   | 3.6         | 6.2          | 2.3    | \$700.00 / ton     | 50,316   | \$17,611  | \$1.23     |
| Blende | ed Phospl   | nate         |        |                    |          |           |            |
| 2014   | 13.2        | 14.1         | 10.1   | \$4.98 / gallon    | 177,169  | \$76,722  | \$5.62     |
| 2013   | 12.5        | 14.0         | 11.3   | \$4.98 / gallon    | 173,141  | \$74,978  | \$5.29     |
| 2012   | 12.3        | 18.5         | 11.0   | \$5.15 / gallon    | 181,034  | \$81,072  | \$5.35     |
| 2011   | 14.7        | 19.1         | 10.7   | \$4.83 / gallon    | 203,601  | \$85,512  | \$6.04     |
| 2010   | 12.5        | 18.4         | 10.7   | \$4.83 / gallon    | 176,954  | \$74,321  | \$5.20     |

\* Carbon can be fed for taste and odor control, though this has not been necessary since 2005.

### **Annual Chemical Costs**



# **Filter Operations**

#### Filter Runs

|      | Avg Hours p | er Filter Run | Total Hours per Year |
|------|-------------|---------------|----------------------|
| Year | 3 MGD       | 8 MGD         | 3 MGD 8 MGD          |
| 2014 | 226.2       | 201.8         | 95,298 104,573       |
| 2013 | 224.5       | 200.6         | 95,958 101,536       |
| 2012 | 208.7       | 171.5         | 96,000 92,402        |
| 2011 | 229.1       | 197.3         | 96,336 88,162        |
| 2010 | 229.2       | 198.8         | 96,286 100,046       |
| 2009 | 253.8       | 239.2         | 97,313 94,790        |
| 2008 | 266.7       | 228.5         | 97,050 100,601       |
| 2007 | 234.9       | 200.7         | 91,395 104,530       |
| 2006 | 245.4       | 226.9         | 105,043 105,059      |
| 2005 | 224.7       | 201.7         | 104,595 105,031      |

#### **Filter Washes**

|      | Total Washes per Year |       | Max # of Washes per Day |       |  |
|------|-----------------------|-------|-------------------------|-------|--|
| Year | 3 MGD                 | 8 MGD | 3 MGD                   | 8 MGD |  |
| 2014 | 429                   | 557   | 5                       | 7     |  |
| 2013 | 427                   | 524   | 7                       | 7     |  |
| 2012 | 476                   | 611   | 7                       | 9     |  |
| 2011 | 430                   | 486   | 5                       | 6     |  |
| 2010 | 452                   | 559   | 7                       | 7     |  |
| 2009 | 387                   | 409   | 6                       | 5     |  |
| 2008 | 369                   | 460   | 6                       | 6     |  |
| 2007 | 425                   | 569   | 6                       | 7     |  |
| 2006 | 453                   | 503   | 5                       | 6     |  |
| 2005 | 522                   | 614   | 6                       | 8     |  |

#### Wash Water

| Year | Total (MG) | Avg Daily % | Max Daily % |  |
|------|------------|-------------|-------------|--|
| 2014 | 243.089    | 1.78        | 6.43        |  |
| 2013 | 248.996    | 1.78        | 6.20        |  |
| 2012 | 321.030    | 2.13        | 9.72        |  |
| 2011 | 211.546    | 1.49        | 5.14        |  |
| 2010 | 223.704    | 1.53        | 15.2        |  |
| 2009 | 149.063    | 1.02        | 4.54        |  |
| 2008 | 145.593    | 0.95        | 4.15        |  |
| 2007 | 192.135    | 1.15        | 4.86        |  |
| 2006 | 160.264    | 1.01        | 3.25        |  |
| 2005 | 184.088    | 1.03        | 3.45        |  |

### **Bacteriological Water Analysis** (Membrane Filter Method) Report of Evanston Water Quality Control Laboratory

The U.S. Environmental Protection Agency (EPA) standard is based on the presence or absence of total coliform bacteria in a water sample. Evanston is required to collect 80 water samples per month from the distribution system. The EPA requires that no more than 5% of these monthly samples test positive for the presence of total coliform.

| <b>Distribution System</b> |                | Positive for   | Positive for   |
|----------------------------|----------------|----------------|----------------|
| Year                       | Number Sampled | Total Coliform | Fecal Coliform |
| 2014                       | 987            | 4              | 1              |
| 2013                       | 981            | 1              | 0              |
| 2012                       | 995            | 2              | 0              |
| 2011                       | 993            | 4              | 0              |
| 2010                       | 994            | 4              | 1              |

#### Additional Bacteriological Samples Analyzed for the Village of Skokie

| Year | Number Sampled |
|------|----------------|
| 2014 | 892            |
| 2013 | 899            |
| 2012 | 914            |
| 2011 | 900            |
| 2010 | 941            |

| Raw Water |                   | Colony Count |         |  |  |
|-----------|-------------------|--------------|---------|--|--|
| Year      | Number Sampled    | Average      | Maximum |  |  |
| 2014      | 728 (Twice Daily) | 38           | >200    |  |  |
| 2013      | 730 (Twice Daily) | 45           | >200    |  |  |
| 2012      | 732 (Twice Daily) | 41           | >200    |  |  |
| 2011      | 730 (Twice Daily) | 102          | >200    |  |  |
| 2010      | 730 (Twice Daily) | 96           | >200    |  |  |

| After Prin | nary Treatment    | Colony Count |         |  |
|------------|-------------------|--------------|---------|--|
| Year       | Number Sampled    | Average      | Maximum |  |
| 2014       | 729 (Twice Daily) | 0            | 0       |  |
| 2013       | 730 (Twice Daily) | 0            | 0       |  |
| 2012       | 732 (Twice Daily) | 0            | 0       |  |
| 2011       | 730 (Twice Daily) | 0            | 0       |  |
| 2010       | 730 (Twice Daily) | 0            | 0       |  |

| Plant Tap | A.M. and P.M. Samples | Colony Count |         |  |
|-----------|-----------------------|--------------|---------|--|
| Year      | Number Sampled        | Average      | Maximum |  |
| 2014      | 1459 (4 times Daily)  | 0            | 0       |  |
| 2013      | 1460 (4 times Daily)  | 0            | 0       |  |
| 2012      | 1464 (4 times Daily)  | 0            | 0       |  |
| 2011      | 1460 (4 times Daily)  | 0            | 0       |  |
| 2010      | 1460 (4 times Daily)  | 0            | 0       |  |

### **Taste & Odor, Turbidity, Temperature and Fluoride** Report of Evanston Water Quality Control Laboratory

#### Taste & Odor

|      | Number   |                                                                           |
|------|----------|---------------------------------------------------------------------------|
| Year | of Tests | _                                                                         |
| 2014 | 498      | -                                                                         |
| 2013 | 508      | _                                                                         |
| 2012 | 504      | _                                                                         |
| 2011 | 756      | _                                                                         |
| 2010 | 2,190    | (testing requirements changed in 2011 to fewer days/week and fewer sample |
|      |          | -                                                                         |

#### **Turbidity** (Expressed in Nephelometric Turbidity Units or NTU)

EPA standard is <0.3 NTU in 95% of samples and never >1 NTU in any single sample of finished water.

|      | F     | Raw Wate | r    | After Pr | After Primary Treatment |      |      | Plant Tap |      |  |  |
|------|-------|----------|------|----------|-------------------------|------|------|-----------|------|--|--|
| Year | Avg   | Max      | Min  | Avg      | Max                     | Min  | Avg  | Max       | Min  |  |  |
| 2014 | 4.11  | 61.40    | 0.17 | 0.66     | 2.20                    | 0.21 | 0.08 | 0.24      | 0.07 |  |  |
| 2013 | 8.49  | 85.5     | 0.49 | 0.75     | 2.35                    | 0.06 | 0.08 | 0.16      | 0.07 |  |  |
| 2012 | 9.59  | 124.0    | 0.55 | 0.74     | 2.71                    | 0.25 | 0.08 | 0.18      | 0.06 |  |  |
| 2011 | 19.66 | 143.0    | 0.54 | 0.98     | 4.20                    | 0.06 | 0.08 | 0.40      | 0.06 |  |  |
| 2010 | 13.50 | 127.0    | 0.51 | 0.79     | 2.60                    | 0.27 | 0.09 | 0.23      | 0.06 |  |  |

#### Raw Water Temperature

| Year | Average         | Maximum         | Minimum        |
|------|-----------------|-----------------|----------------|
| 2014 | 10.0°C / 50.0°F | 23.8°C / 74.8°F | 0.8°C / 33.4°F |
| 2013 | 11.2°C / 52.1°F | 24.5°C / 76.1°F | 0.8°C / 33.4°F |
| 2012 | 12.9°C / 55.3°F | 26.8°C / 80.2°F | 2.1°C / 35.8°F |
| 2011 | 11.3°C / 52.3°F | 25.0°C / 77.0°F | 0.8°C / 33.4°F |
| 2010 | 10.6°C / 51.2°F | 22.0°C / 71.6°F | 0.8°C / 33.4°F |

#### Fluoride Content (EPA standard is 0.9 - 1.2 ppm)

|      |      | Plant Tap | )    | C    | Distributio | n    |
|------|------|-----------|------|------|-------------|------|
| Year | Avg  | Max       | Min  | Avg  | Max         | Min  |
| 2014 | 0.96 | 1.10      | 0.22 | 1.07 | 1.07        | 0.90 |
| 2013 | 0.97 | 1.11      | 0.90 | 0.98 | 1.09        | 0.90 |
| 2012 | 0.98 | 1.09      | 0.90 | 0.98 | 1.08        | 0.90 |
| 2011 | 0.99 | 1.11      | 0.90 | 1.00 | 1.11        | 0.90 |
| 2010 | 0.98 | 1.11      | 0.90 | 0.98 | 1.09        | 0.90 |

# Chlorine Residual (ppm)

### **Report of Evanston Water Quality Control Laboratory**

#### **Filter Influent**

| F    | ree Residu                                       | al                                                                                                                                                                                | T                                                                                                                                                                                                                                        | otal Residu                                                                                                                                                                                                                                                                                                                                              | lal                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Avg  | Max                                              | Min                                                                                                                                                                               | Avg                                                                                                                                                                                                                                      | Max                                                                                                                                                                                                                                                                                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.68 | 1.14                                             | 0.42                                                                                                                                                                              | 0.81                                                                                                                                                                                                                                     | 1.29                                                                                                                                                                                                                                                                                                                                                     | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.64 | 0.92                                             | 0.35                                                                                                                                                                              | 0.77                                                                                                                                                                                                                                     | 1.06                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.68 | 1.04                                             | 0.44                                                                                                                                                                              | 0.81                                                                                                                                                                                                                                     | 1.19                                                                                                                                                                                                                                                                                                                                                     | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.67 | 0.96                                             | 0.42                                                                                                                                                                              | 0.81                                                                                                                                                                                                                                     | 1.14                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.63 | 0.94                                             | 0.26                                                                                                                                                                              | 0.78                                                                                                                                                                                                                                     | 1.11                                                                                                                                                                                                                                                                                                                                                     | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | F<br>Avg<br>0.68<br>0.64<br>0.68<br>0.67<br>0.63 | Free Residu           Avg         Max           0.68         1.14           0.64         0.92           0.68         1.04           0.67         0.96           0.63         0.94 | Avg         Max         Min           0.68         1.14         0.42           0.64         0.92         0.35           0.68         1.04         0.44           0.67         0.96         0.42           0.63         0.94         0.26 | Free Residual         To           Avg         Max         Min         Avg           0.68         1.14         0.42         0.81           0.64         0.92         0.35         0.77           0.68         1.04         0.44         0.81           0.67         0.96         0.42         0.81           0.63         0.94         0.26         0.78 | Free Residual         Total Residual           Avg         Max         Min         Avg         Max           0.68         1.14         0.42         0.81         1.29           0.64         0.92         0.35         0.77         1.06           0.68         1.04         0.44         0.81         1.19           0.67         0.96         0.42         0.81         1.14           0.63         0.94         0.26         0.78         1.11 |

#### Filter Effluent

| Free Residual |      |      | Total Residual |      |      |      |
|---------------|------|------|----------------|------|------|------|
| Year          | Avg  | Max  | Min            | Avg  | Max  | Min  |
| 2014          | 0.60 | 1.04 | 0.38           | 0.72 | 1.19 | 0.51 |
| 2013          | 0.55 | 0.83 | 0.30           | 0.67 | 0.97 | 0.40 |
| 2012          | 0.59 | 0.92 | 0.40           | 0.71 | 1.04 | 0.51 |
| 2011          | 0.58 | 0.86 | 0.36           | 0.71 | 0.99 | 0.48 |
| 2010          | 0.55 | 0.85 | 0.23           | 0.70 | 0.96 | 0.48 |

#### Plant Tap

|      | Free Residual |      |      | Total Residual |      |      |  |
|------|---------------|------|------|----------------|------|------|--|
| Year | Avg           | Max  | Min  | Avg            | Max  | Min  |  |
| 2014 | 0.68          | 1.00 | 0.51 | 0.83           | 1.20 | 0.61 |  |
| 2013 | 0.66          | 0.88 | 0.46 | 0.80           | 1.07 | 0.60 |  |
| 2012 | 0.67          | 1.00 | 0.48 | 0.81           | 1.15 | 0.60 |  |
| 2011 | 0.67          | 0.94 | 0.49 | 0.81           | 1.17 | 0.62 |  |
| 2010 | 0.66          | 0.83 | 0.48 | 0.82           | 1.05 | 0.62 |  |

#### **Distribution Tap**

|      | Free Residual |      |      | Total Residual |      |      |  |
|------|---------------|------|------|----------------|------|------|--|
| Year | Avg           | Max  | Min  | Avg            | Max  | Min  |  |
| 2014 | 0.45          | 0.80 | 0.17 | 0.61           | 1.02 | 0.31 |  |
| 2013 | 0.45          | 0.78 | 0.18 | 0.61           | 0.99 | 0.34 |  |
| 2012 | 0.44          | 0.90 | 0.13 | 0.59           | 1.05 | 0.30 |  |
| 2011 | 0.43          | 0.94 | 0.15 | 0.59           | 0.86 | 0.28 |  |
| 2010 | 0.41          | 0.82 | 0.07 | 0.58           | 0.98 | 0.20 |  |

### **Phosphate, pH, Alkalinity and Hardness** Report of Evanston Water Quality Control Laboratory

#### Phosphate (EPA standard is 0.15 - 0.50 ppm)

| Number   | <u> </u>                                       | Plant Tap                                                                                                                                                   | )                                                                                                                                                                                                                                   |
|----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of Tests | Avg                                            | Max                                                                                                                                                         | Min                                                                                                                                                                                                                                 |
| 365      | 0.24                                           | 0.30                                                                                                                                                        | 0.20                                                                                                                                                                                                                                |
| 365      | 0.21                                           | 0.24                                                                                                                                                        | 0.18                                                                                                                                                                                                                                |
| 365      | 0.16                                           | 0.26                                                                                                                                                        | 0.16                                                                                                                                                                                                                                |
| 365      | 0.21                                           | 0.25                                                                                                                                                        | 0.18                                                                                                                                                                                                                                |
|          | Number<br>of Tests<br>365<br>365<br>365<br>365 | Number         I           of Tests         Avg           365         0.24           365         0.21           365         0.16           365         0.21 | Number         Plant Tap           of Tests         Avg         Max           365         0.24         0.30           365         0.21         0.24           365         0.16         0.26           365         0.21         0.25 |

#### pH (EPA standard is 7.1 - 7.9)

|      | Number   | R   | Raw Water |     |     | Plant Ta | 0   |
|------|----------|-----|-----------|-----|-----|----------|-----|
| Year | of Tests | Avg | Max       | Min | Avg | Max      | Min |
| 2014 | 729      | 8.3 | 8.6       | 8.0 | 7.6 | 7.7      | 7.3 |
| 2013 | 730      | 8.3 | 8.5       | 8.0 | 7.6 | 7.9      | 7.3 |
| 2012 | 732      | 8.3 | 8.5       | 8.1 | 7.6 | 7.9      | 7.6 |
| 2011 | 730      | 8.3 | 8.5       | 8.0 | 7.6 | 7.8      | 7.4 |
| 2010 | 730      | 8.3 | 8.6       | 7.9 | 7.6 | 7.8      | 7.3 |

#### Alkalinity (ppm)

|      | Number   | R   | Raw Water |     |     | Plant Tap |     |  |
|------|----------|-----|-----------|-----|-----|-----------|-----|--|
| Year | of Tests | Avg | Max       | Min | Avg | Max       | Min |  |
| 2014 | 730      | 109 | 134       | 92  | 102 | 130       | 91  |  |
| 2013 | 730      | 105 | 112       | 94  | 98  | 108       | 90  |  |
| 2012 | 732      | 105 | 112       | 92  | 98  | 108       | 84  |  |
| 2011 | 730      | 106 | 116       | 93  | 99  | 110       | 74  |  |
| 2010 | 730      | 103 | 115       | 85  | 97  | 111       | 84  |  |

#### Hardness (ppm as CaCo<sub>3</sub>)

|      | Number   | R   | Raw Water |     | Fini | Finished Water |     |
|------|----------|-----|-----------|-----|------|----------------|-----|
| Year | of Tests | Avg | Max       | Min | Avg  | Max            | Min |
| 2014 | 730      | 135 | 149       | 104 | 133  | 149            | 97  |
| 2013 | 730      | 135 | 142       | 111 | 131  | 141            | 119 |
| 2012 | 732      | 136 | 149       | 124 | 132  | 149            | 134 |
| 2011 | 730      | 135 | 148       | 120 | 133  | 149            | 118 |
| 2010 | 730      | 133 | 151       | 122 | 132  | 151            | 120 |

# **Detected Substances: 2014 Water Quality Data**

| Substance                                                 | MCLG             | Highest<br>Allowed (MCL)                                              | Highest Level<br>Detected                                                  | Range of<br>Levels<br>Detected | Violation | Source of<br>Contamination                                                                                                                |
|-----------------------------------------------------------|------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Turbidity (NTU)<br>(Cloudiness)                           | NA               | TT=Monitored by<br>% exceeding 0.3<br>NTU and max<br>allowed is 1 NTU | 100% of samples<br>meet 0.3 NTU; 0.24<br>NTU Highest single<br>measurement | 0.07 - 0.24                    | NO        | Soil runoff                                                                                                                               |
| Fluoride (ppm)                                            | 4                | 4                                                                     | 1.1                                                                        | Single<br>Sample               | NO        | Erosion of natural<br>deposits; Water additive<br>which promotes strong<br>teeth; Discharge from<br>fertilizer and aluminum<br>factories. |
| Nitrate [measured as Nitrogen](ppm)                       | 10               | 10                                                                    | 0.4                                                                        | Single<br>Sample               | NO        | Runoff from fertilizer<br>use; Leaching from<br>septic tanks, sewage;<br>Erosion of natural<br>deposits                                   |
| Sodium (ppm)                                              | NA               | NA                                                                    | 7.8                                                                        | Single<br>Sample               | NO        | Erosion from naturally<br>occurring deposits                                                                                              |
| Barium (ppm)                                              | 2                | 2                                                                     | 0.019                                                                      | Single<br>Sample               | NO        | Discharge of drilling<br>wastes; Discharge from<br>metal refineries; Erosion<br>of Natural deposits                                       |
| Chromium, Total<br>(ppm)                                  | 0.1              | 0.1                                                                   | 0.0003                                                                     | 0.0002 -<br>0.0003             | NO        | Discharge from steel<br>and pulp mills; erosion of<br>natural deposits                                                                    |
| Total Coliform<br>Bacteria                                | 0                | 5% of Monthly<br>Samples are<br>Positive                              | 1.2%                                                                       | NA                             | NO        | Naturally present in the environment                                                                                                      |
| Combined Radium 226/228 (pCi/L)b                          | 0                | 5                                                                     | 0.99                                                                       | Single<br>Sample               | NO        | Erosion of natural deposits                                                                                                               |
| Gross Alpha<br>excluding Radon<br>and Uranium<br>(pCi/L)b | 0                | 15                                                                    | 0.16                                                                       | Single<br>Sample               | NO        | Erosion of natural deposits                                                                                                               |
| Cotinine (ppb)                                            | NOT<br>REGULATED | NOT<br>REGULATED                                                      | 0.002                                                                      | Single<br>Sample               | NO        | Nicotine<br>metabolite/waste water<br>discharge                                                                                           |
| Sulfate (ppm)                                             | NOT<br>REGULATED | USEPA National<br>Secondary<br>Standard of 250                        | 25                                                                         | Single<br>Sample               | NO        | Naturally occurring, coagulant residual                                                                                                   |
| Disinfectants<br>and                                      |                  |                                                                       |                                                                            | Range of                       |           |                                                                                                                                           |
| Disinfection By-                                          |                  | Highest                                                               | Highest Level                                                              | Levels                         |           | Source of                                                                                                                                 |
| Products                                                  | MCLG             | Allowed (MCL)                                                         | Detected                                                                   | Detected                       | Violation | Contamination                                                                                                                             |
| Trihalomethanes<br>(ppb)                                  | NA               | 80                                                                    | 25                                                                         | 10.6 - 34.5                    | NO        | By-product of drinking<br>water chlorination                                                                                              |
| Acids (ppb)                                               | NA               | 60                                                                    | 9                                                                          | 4.7 - 12                       | NO        | water chlorination                                                                                                                        |
| Chlorine (ppm)                                            | 4 MRLDG          | 4 MRDL                                                                | 0.5                                                                        | 0.4 - 1                        | NO        | Water additive used to<br>control microbes                                                                                                |

## **Detected Substances: 2014 Water Quality Data**

| Lead &                                         |                  | Action                      |                 | Range of<br>Levels             |           |                                                                                                                                                                                                 |
|------------------------------------------------|------------------|-----------------------------|-----------------|--------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper                                         | MCLG             | Level (AL)                  | 90th Percentile | Detected                       | Violation | Source of Contamination                                                                                                                                                                         |
| Lead (ppb)                                     | 0                | 15                          | 3.9             | <1 - 11                        | NO        | Corrosion of household<br>plumbing systems; Erosion of<br>natural deposits                                                                                                                      |
| Copper (ppm)                                   | 1.3              | 1.3                         | 0.14            | <0.001 - 0.510                 | NO        | Erosion of natural deposits;<br>Leaching from wood<br>preservatives; Corrosion of<br>household plumbing systems                                                                                 |
| UCMR                                           | MCLG             | Highest<br>Allowed<br>(MCL) | Average         | Range of<br>Levels<br>Detected | Violation | Source of Contamination                                                                                                                                                                         |
| Chromium,<br>Hexavalent (ppb)*<br>(chromium-6) | NOT<br>REGULATED | NOT<br>REGULATED            | 0.21            | 0.21 - 0.24                    | NO        | Naturally-occurring element;<br>used in making steel or other<br>alloys. Chromium-3 or -6 forms<br>are used for chrome plating,<br>dyes and pigments, leather<br>tanning and wood preservation. |
| Molybdenum<br>(ppb)*                           | NOT<br>REGULATED | NOT<br>REGULATED            | 1.2             | 1.1 - 1.4                      | NO        | Naturally occurring element<br>found in ores and present in<br>plants, animals and bacteria;<br>commonly used form<br>molybdenum trioxide used as a<br>chemical reagent.                        |
| Strontium (ppb)*                               | NOT<br>REGULATED | NOT<br>REGULATED            | 128             | 120 - 130                      | NO        | Naturally occurring element;<br>historically, commercial use of<br>strontium has been in the<br>faceplate glass of cathode-ray<br>tube televisions to block x-ray<br>emissions.                 |
| Vanadium (ppb)*                                | NOT<br>REGULATED | NOT<br>REGULATED            | 0.3             | 0.2 - 0.3                      | NO        | Naturally occurring elemental<br>metal; used as vanadium<br>pentoxide which is a chemical<br>intermediate and a catalyst.                                                                       |

#### Additional Information About Your Water

| Measured<br>Parameter                     | Evanston<br>Minimum | Evanston<br>Maximum | Measured<br>Parameter     | Evanston<br>Result |
|-------------------------------------------|---------------------|---------------------|---------------------------|--------------------|
| pH (0-14 pH units)                        | 7.3                 | 7.7                 | Calcium (ppm)             | 36                 |
| Hardness (as mg<br>CaCO <sub>3/</sub> /L) | 119                 | 149                 | Chloride (ppm)            | 16                 |
| Hardness (gpg)                            | 7                   | 8.7                 | Dissolved Solids<br>(ppm) | 167                |
| Alkalinity (ppm)                          | 91                  | 110                 | Magnesium<br>(ppm)        | 13                 |
| Raw Water<br>Temperature °F               | 33                  | 75                  | Potassium (ppm)           | 1.6                |

# **Non-Detected Contaminants**

### 2014 Water Quality Data

| Inorganic Contaminants                        | MCLG | MCL  | UL MRL | Level Found |
|-----------------------------------------------|------|------|--------|-------------|
| ARSENIC (ppb)                                 | none | 50   | 1      | ND          |
| CADMIUM (ppb)                                 | 5    | 5    | 1      | ND          |
| CHROMIUM (ppb)                                | 100  | 100  | 0.9    | ND          |
| CYANIDE (ppb)                                 | 200  | 200  | 0.01   | ND          |
| IRON (ppb)                                    | n/a  | 1000 | 0.02   | ND          |
| MANGANESE (ppb)                               | n/a  | 150  | 2      | ND          |
| MERCURY (INORGANIC) (ppb)                     | 2    | 2    | 0.1    | ND          |
| NICKEL                                        | n/a  | 100  | 1      | ND          |
| SELENIUM (ppb)                                | 50   | 50   | 2      | ND          |
| ANTIMONY (ppb)                                | 6    | 6    | 1      | ND          |
| BERYLLIUM (ppb)                               | 4    | 4    | 0.3    | ND          |
| THALLIUM (ppb)                                | 0.5  | 2    | 0.3    | ND          |
| ZINC (ppb)                                    | n/a  | 5000 | 5      | ND          |
| NITRITE (AS NITROGEN) (ppm)                   | 1    | 1    | 0.01   | ND          |
| Synthetic Organic Contaminants                |      |      |        |             |
| ENDRIN (ppb)                                  | 2    | 2    | 0.1    | ND          |
| BHC- GAMMA (LINDANE)                          | 200  | 200  | 0.1    | ND          |
| METHOXYCHLOR (ppb)                            | 40   | 40   | 0.1    | ND          |
| TOXAPHENE (ppb)                               | 0    | 3    | 1      | ND          |
| DIQUAT (ppb)                                  | 20   | 20   | 2      | ND          |
| DALAPON (ppb)                                 | 200  | 200  | 5      | ND          |
| ENDOTHALL (ppb)                               | 100  | 100  | 9      | ND          |
| DI(2-ETHYLHEXYL)ADIPATE (ppb)                 | 400  | 400  | 0.6    | ND          |
| OXAMYL (VYDATE) (ppb)                         | 200  | 200  | 2      | ND          |
| SIMAZINE (ppb))                               | 4    | 4    | 0.35   | ND          |
| DI(2-ETHYLHEXYL)PHTHALATE (ppb)               | 0    | 6    | 0.6    | ND          |
| PICHLORAM (ppb)                               | 500  | 500  | 0.4    | ND          |
| DINOSEB (ppb)                                 | 7    | 7    | 1      | ND          |
| HEXACHLOROCYCLOPENTADIENE (ppb)               | 50   | 50   | 0.5    | ND          |
| ALDICARB SULFOXIDE                            | n/a  | n/a  | 1      | ND          |
| ALDICARB SULFONE                              | n/a  | n/a  | 1      | ND          |
| CARBOFURAN (ppb)                              | 40   | 40   | 0.9    | ND          |
| ALDICARB                                      | n/a  | n/a  | 1      | ND          |
| ATRAZINE (ppb)                                | 3    | 3    | 0.3    | ND          |
| ALACHLOR (LASSO)(ppb)                         | 0    | 2    | 0.2    | ND          |
| HEPTACHLOR                                    | 0    | 100  | 0.04   | ND          |
| HEPTACHLOR EPOXIDE (ppt)                      | 0    | 100  | 0.02   | ND          |
| DIELDRIN                                      | n/a  | 1    | 0.05   | ND          |
| 2,4-Dichloro-Phenoxyacetic Acid (2,4-D) (ppb) | 10   | 10   | 1      | ND          |
| 2,4,5-TP (SILVEX) (ppb)                       | 50   | 50   | 1      | ND          |
| HEXACHLOROBENZENE (ppb)                       | 0    | 1    | 0.1    | ND          |
| BENZO (A) PYRENE (ppb)                        | 0    | 200  | 0.1    | ND          |
| PENTACHLOROPHENOL (PCP) (ppb)                 | 0    | 1    | 0.4    | ND          |
| ALDRIN (ppb)                                  | n/a  | 1    | 0.05   | ND          |
| POLYCHLORINATED BIPHENYLS (PCB) (ppb)         | 0    | 500  | varies | ND          |
| TOTAL DDT (ppb)                               | n/a  | 50   | 1      | ND          |
| 1,2 DIBROMO3-CHLOROPROPANE (DBCP) (ppb)       | 0    | 0.2  | 0.02   | ND          |
| ETHYLENE DIBROMIDE (EDB) (ppb)                | 0    | 50   | 0.01   | ND          |
| CHLORDANE (ppb)                               | 0    | 2    | 0.2    | ND          |

### **Non-Detected Contaminants**

### 2014 Water Quality Data

| THM/HAAs                                   | MCLG | MCL | UL MRL | Level Found |
|--------------------------------------------|------|-----|--------|-------------|
| MONOBROMOACETIC ACID (ppb)                 | n/a  | n/a | 1.0    | ND          |
| UCMR3 (ppb) collected Feb. & May 2014      | MCLG | MCL | UL MRL | Level Found |
| Chlorate                                   | n/a  | n/a | 20     | ND          |
| 1.4 Dioxane                                | n/a  | n/a | 0.07   | ND          |
| Bromochloromethane                         | n/a  | n/a | 0.06   | ND          |
| Bromomethane                               | n/a  | n/a | 0.2    | ND          |
| 1,3- Butadiene                             | n/a  | n/a | 0.1    | ND          |
| Chlorodifluoromethane                      | n/a  | n/a | 0.08   | ND          |
| Chyloromethane                             | n/a  | n/a | 0.2    | ND          |
| 1,1 Dichloroethane                         | n/a  | n/a | 0.03   | ND          |
| 1,2,3, Trichloropropane                    | n/a  | n/a | 0.03   | ND          |
| Perfluorobutanesulfonic acid (PFBS)        | n/a  | n/a | 0.09   | ND          |
| Perfluoroheptanoic acid (PFHpA)            | n/a  | n/a | 0.01   | ND          |
| Perfluorohexanesulfonic acid (PFHxS)       | n/a  | n/a | 0.03   | ND          |
| Perfluorononanoic acid (PFNA)              | n/a  | n/a | 0.02   | ND          |
| Perfluorooctane sulfonate (PFOS)           | n/a  | n/a | 0.04   | ND          |
| Perfluorooctanoic acid (PFOA)              | n/a  | n/a | 0.02   | ND          |
| Cobalt                                     | n/a  | n/a | 1      | ND          |
|                                            |      |     |        |             |
| Unregulated Contaminants                   | MCLG | MCL | UL MRL | Level Found |
| Bisphenol A (ppb)                          | n/a  | n/a | 0.1    | ND          |
| Nonylphenol, isomer mix (ppb)              | n/a  | n/a | 0.5    | ND          |
| 4-n-Octylphenol (ppb)                      | n/a  | n/a | 0.5    | ND          |
| 4-tert-Octylphenol (ppb)                   | n/a  | n/a | 0.5    | ND          |
| Pentachlorophenol (ppb)                    | n/a  | n/a | 0.1    | ND          |
| Phenylphenol (ppb)                         | n/a  | n/a | 0.1    | ND          |
| Tetrabromobisphenol A (ppb)                | n/a  | n/a | 0.1    | ND          |
| 2,4,6-Trichlorophenol (ppb)                | n/a  | n/a | 0.1    | ND          |
| Pharmaceutically Active Compounds Positive | n/a  | n/a | varies | ND          |
| Pharmaceutically Active Compounds Negative | n/a  | n/a | varies | ND          |

MCL= Maximum Contaminant Level

MCLG = Maximum Contaminant Level Goal

UL MRL= Underwriters Laboratories Minimum Reporting Level

ND = Not Detected

# **Lead and Copper Statement**

#### **Report of Water Quality Control Laboratory**

There is no detectable lead in the water produced by the City of Evanston's water treatment plant. Lead enters the water from lead solder and/or lead pipes in water services, or through plumbing fixtures. To minimize contamination resulting from corrosion, the EPA established a lead action level of 15 parts per billion (ppb) in 1992. The 90<sup>th</sup> percentile result of samples analyzed for lead and copper content in homes with lead pipes must be less than the action levels of 15 ppb and 1.3 ppm, respectively.

Lead and copper sampling is performed every three years in compliance with state law. In 2014, Evanston sampled water from 30 homes with lead service lines and analyzed them for lead and copper content. All results were below the action levels. The 90<sup>th</sup> percentile level for lead in these samples was 3.9 ppb. The 90th percentile level for copper was 0.14 ppm.

### **Definitions and General Explanations**

Action Level – The concentration of a contaminant, which, if exceeded, triggers treatment or other required actions by the water supply.

**Disinfection By-Products** – Total Trihalomethanes and Total Haloacetic Acids are used to regulate the amount of allowable by-products of chlorination.

**EPA** – Environmental Protection Agency

**Fluoride –** The Illinois Department of Public Health recommends an optimal fluoride range of 0.9 to 1.2 ppm

**Lead and Copper –** There is no detectable lead in the water provided to the Evanston community. Lead enters the water from lead solder, lead pipes, or plumbing fixtures. To minimize contamination resulting from corrosion, the EPA established a lead action level of 15 parts per billion (ppb) in 1992. The 90<sup>th</sup> percentile result of samples analyzed for lead and copper content in homes with lead pipes must be less than the action level of 15 ppb and 1.3 ppm respectively.

**MCL** – Maximum Contaminant Level, the highest level of a contaminant that is allowed in drinking water. A MCL is set as close to a MCLG as feasible using the best available treatment technology.

**MCLG** – Maximum Contaminant Level Goal, the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

 $mg CaCO_3/L - milligrams of calcium carbonate per liter.$ 

mrem/yr – Millirems Per Year. A measure of radiation absorbed by the body.

**MRDL** – Maximum Residual Disinfection Level. The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**MRDLG** – Maximum Residual Disinfection Level Goal. The level of disinfectant in drinking water below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

**NA –** Not applicable.

**NTU –** Nephelometric Turbidity Units. A measure of the cloudiness of water.

pCi/L – Picocuries per liter. A measure of radioactivity.

**ppm** – Parts per million. A measure of the concentration of a substance in water. An equivalent unit of measurement is milligrams per liter (mg/L).

**ppb** – Parts per billion. A measure of the concentration of a substance in water. An equivalent unit of measurement is micrograms per liter ( $\mu$ g/L).

**Sodium** – There is not a state or federal MCL for sodium. Sodium levels below 20 mg/L (ppm) are not considered to be a public health issue.

**TT –** Treatment Technique. A required process to reduce the level of a contaminant.

**Turbidity** – A measurement of the cloudiness of the water caused by suspended particles. This is monitored because it is a good indicator of water quality as well as well as the effectiveness of the filtration and disinfection processes.

**TOC** – Total Organic Carbon. The Evanston Water Supply monitored the percentage of TOC removal quarterly and met all TOC removal requirements set by the EPA.

# Distribution

The Distribution Division manages operation, maintenance, and repair of Evanston's water mains, valves, fire hydrants, and the City's portion of water service lines. This includes repairing water main breaks and water service leaks; and installing new valves, hydrants, and water mains to improve the operation and efficiencv of Evanston's water distribution system. Annual maintenance programs administered by this division include water main leak surveying, valve exercising, and fire hydrant testing. The Distribution Division also performs routine water quality sampling in buildings throughout Evanston, and administers the City's cross connection control program. These two programs ensure that water remains safe to drink after leaving the water treatment plant.

Evanston has had water а distribution system since the 1870s, longer than most communities in the Chicago area. The original water mains were made of wood, with a transition to cast iron water mains by the 1890s. After completion of the water treatment plant in 1914, the plentiful supply of safe drinking water drew many new residents and businesses to Evanston. The system underwent distribution significant expansion over the next few years, and many of those 90 to 100+ year-old water mains are still in operation today. Evanston manages an annual water main renewal program to replace and rehabilitate old water mains as they develop maintenance problems.



A Distribution Division field crew installing a new fire hydrant connection on a 24" diameter water main, to improve the City's ability to clean and test this main.



Pieces of wood water main from Evanston's original water distribution system.

# **Fire Hydrants**

#### System Data and Maintenance\*

| Fire Flow Testing          | 2010  | 2011  | 2012  | 2013  | 2014** |
|----------------------------|-------|-------|-------|-------|--------|
| Fire Department            | 1,394 | 1,410 | 1,400 | 1,417 | 1,100  |
| Utilities Department       | 92    | 126   | 42    | 22    | 0      |
|                            |       |       |       |       |        |
| Installation & Maintenance | 2010  | 2011  | 2012  | 2013  | 2014   |
| Installed (new)            | 11    | 19    | 10    | 18    | 12     |
| Replaced                   | 19    | 22    | 17    | 22    | 15     |
| Repaired                   | 114   | 176   | 73    | 175   | 315    |





\* All work completed by Utilities Department staff unless otherwise noted.

\*\* Testing was limited to avoid impacting water pressure during transmission main improvements.

\*\*\* Changes due to hydrant removal/addition during water main improvements and utility atlas updates.

# **Water Distribution System Valves**

#### System Data and Maintenance\*

| Testing & Inspection       | 2010  | 2011  | 2012  | 2013  | 2014  |
|----------------------------|-------|-------|-------|-------|-------|
| In-House                   | 1,400 | 807   | 1,071 | 1,117 | 910   |
| Contractor                 | 0     | 0     | 0     | 0     | 0     |
|                            |       |       |       |       |       |
| Installation & Maintenance | 2010  | 2011  | 2012  | 2013  | 2014  |
| Installed (new)            | 12    | 10    | 11    | 14    | 14    |
| Replaced                   | 36    | 25    | 26    | 44    | 34    |
| Repaired                   | 44    | 24    | 38    | 41    | 19    |
|                            |       |       |       |       |       |
| Number of Valves by Size   | 2010  | 2011  | 2012  | 2013  | 2014  |
| 4" or smaller              | 31    | 31    | 30    | 28    | 23    |
| 6"                         | 1033  | 1021  | 1,011 | 996   | 979   |
| 8"                         | 452   | 469   | 484   | 492   | 507   |
| 10"                        | 183   | 183   | 185   | 183   | 189   |
| 12"                        | 222   | 227   | 235   | 243   | 243   |
| 14"                        | 2     | 2     | 2     | 2     | 2     |
| 16"                        | 49    | 49    | 49    | 46    | 50    |
| 18"                        | 4     | 4     | 4     | 4     | 5     |
| 20"                        | 1     | 1     | 2     | 2     | 2     |
| 24"                        | 30    | 30    | 30    | 33    | 33    |
| 30"                        | 11    | 11    | 11    | 12    | 12    |
| 36"                        | 12    | 12    | 12    | 12    | 12    |
| 42"                        | 2     | 2     | 2     | 2     | 2     |
| 48"                        | 2     | 2     | 2     | 2     | 2     |
| Total                      | 2,034 | 2,044 | 2,059 | 2,057 | 2,061 |



\* All work completed by Utilities Department staff unless otherwise noted.

\*\* Valves are buried beneath paved surfaces and are not accessible for field verification of age.

# Water Mains

#### System Data and Maintenance\*

| Improvements (lineal feet)     | 2010   | 2011   | 2012   | 2013   | 2014   |
|--------------------------------|--------|--------|--------|--------|--------|
| Replaced by City               | 0      | 0      | 181    | 50     | 0      |
| Replaced by Contractor         | 7,712  | 7,235  | 9,868  | 8,870  | 8,526  |
| Rehabilitated by Contractor    | 0      | 0      | 0      | 0      | 569    |
|                                |        |        |        |        |        |
| Water Main Break Repairs       | 2010   | 2011   | 2012   | 2013   | 2014   |
| Blow-Out                       | 26     | 16     | 56     | 21     | 32     |
| Shear Break                    | 10     | 11     | 8      | 30     | 36     |
| Damage                         | 0      | 0      | 2      | 3      | 2      |
| Total                          | 36     | 27     | 66     | 54     | 70     |
|                                |        |        |        |        |        |
| Pipe Sizes (length in miles)** | 2010   | 2011   | 2012   | 2013   | 2014   |
| 4" or smaller                  | 2.10   | 2.10   | 1.83   | 1.67   | 1.37   |
| 6"                             | 78.66  | 77.49  | 76.02  | 74.99  | 72.99  |
| 8"                             | 25.72  | 26.69  | 27.62  | 28.35  | 28.81  |
| 10"                            | 12.46  | 12.46  | 12.47  | 12.30  | 12.76  |
| 12"                            | 16.55  | 16.88  | 17.42  | 17.73  | 17.51  |
| 14"                            | 0.37   | 0.37   | 0.37   | 0.37   | 0.37   |
| 16"                            | 6.35   | 6.35   | 6.51   | 6.25   | 6.26   |
| 18"                            | 0.83   | 0.83   | 0.83   | 0.83   | 0.83   |
| 20"                            | 0.49   | 0.56   | 0.56   | 0.56   | 0.56   |
| 24"                            | 8.25   | 8.30   | 8.30   | 8.60   | 8.60   |
| 30"                            | 1.69   | 1.69   | 1.69   | 1.69   | 1.69   |
| 36"                            | 3.30   | 3.30   | 3.30   | 3.30   | 3.30   |
| 42"                            | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   |
| 48"                            | 0.68   | 0.68   | 0.68   | 0.68   | 0.68   |
| Total                          | 157.48 | 157.73 | 157.63 | 157.35 | 155.77 |



\* All work completed by Utilities Department staff unless otherwise noted.

\*\* Changes due to water main removal/addition during improvement projects and utility atlas updates.

# **Water Services**

#### System Data and Maintenance\*

Water Service Accounts: 14,997 (metered domestic services + unmetered fire services)

| Installation & Maintenance      | 2010 | 2011 | 2012 | 2013 | 2014 |
|---------------------------------|------|------|------|------|------|
| New Services Installed          | 31   | 19   | 4    | 2    | 19   |
| Service Taps Replaced***        | -    | -    | 55   | 28   | 33   |
| Services Replaced by Contractor | -    | -    | -    | 188  | 124  |
| Service Leaks Repaired          | 26   | 22   | 14   | 34   | 36   |

### **Breakdown of In-House Maintenance Costs**

|                          | 2010      | 2011      | 2012      | 2013      | 2014        |
|--------------------------|-----------|-----------|-----------|-----------|-------------|
| Water Mains              | \$171,124 | \$145,934 | \$274,946 | \$213,075 | \$322,859   |
| Fire Hydrants            | \$38,467  | \$207,625 | \$95,065  | \$109,048 | \$42,398    |
| Water Services           | \$189,912 | \$211,007 | \$135,193 | \$159,592 | \$293,347   |
| Valves                   | \$202,871 | \$76,172  | \$102,763 | \$128,645 | \$43,665    |
| Snow & Ice Removal       | \$70,745  | \$59,479  | \$24,085  | \$42,384  | \$74,519    |
| Assist Contractor        | \$42,597  | \$43,969  | \$70,848  | \$69,516  | \$71,591    |
| JULIE Locates            | \$34,560  | \$58,975  | \$62,845  | \$73,519  | \$71,911    |
| Equip/Facility Maint.    | \$67,348  | \$85,559  | \$62,757  | \$85,631  | \$62,051    |
| Assist Other City Depts. | \$46,640  | \$21,390  | \$16,053  | \$11,364  | \$25,509    |
| Assist W&S Divisions     | \$18,067  | \$11,433  | \$13,739  | \$10,811  | \$5,581     |
| Safety & Training        | \$86,878  | \$19,270  | \$10,853  | \$18,883  | \$17,207    |
| Misc.                    | \$7,666   | \$10,337  | \$25,370  | \$45,422  | \$88,294    |
| Total                    | \$976,874 | \$951,150 | \$894,518 | \$967,890 | \$1,118,932 |



\* All work completed by Utilities Department staff unless otherwise noted.

\*\* Includes metered domestic water service accounts and unmetered fire service accounts.

\*\*\* Differentiation of replacement of existing water services from new water service installations began in

### **Water Main Improvements**

The Utilities Department manages an annual water main improvement program, with the goal of renewing at least 1.5 miles of water mains annually (1% annual system-wide renewal rate). This program addresses water mains that have developed maintenance problems due to their age, as well as water mains that need to be enlarged to satisfy current fire flow requirements.



#### Water Mains Installed or Rehabilitated

## **Leak Detection Program**

In 2013, the Utilities Department developed a City-wide surveying program to catch water main leaks early and minimize our water loss. This saves operating costs to produce the water, conserves a vital natural resource, and allows more water mains to be repaired proactively rather than on an emergency basis.

The Utilities Department uses leak noise loggers, small transmitters that sense the sound waves created by water escaping through a hole in a water main, to test water mains for leaks throughout the year. This proactive leak surveying program began in 2013, and water distribution crews were able to survey all 157 miles of Evanston's water mains in 2013-2014.



The 2013-2014 surveys found five leaks on building water service pipes and three breaks on water mains. These defects were all successfully repaired, and the estimated water savings is over 15 million gallons (MG) per year.

| Year   | Miles of Water<br>Main Surveyed | Water Service<br>Leaks Found | Water Main<br>Breaks Found | Water Savings<br>After Repairs |
|--------|---------------------------------|------------------------------|----------------------------|--------------------------------|
| 2013   | 59                              | 1                            | 2                          | 8.85 MG/year                   |
| 2014   | 98                              | 4                            | 1                          | 6.26 MG/year                   |
| Totals | 157                             | 5                            | 3                          | 15.1 MG/year                   |

In 2015 and future years, the Utilities Department anticipates being able to survey the entire 157 miles of water mains in Evanston every year. This frequency is important since water main breaks and leaks can develop at any time; a water main that shows no signs of leakage one year can develop a large leak by the next year.

## **Cross Connection Control**

A cross connection is a point in a plumbing system where the potable (safe, drinkable) water supply is connected to a non-potable (polluted or untreated) source. A cross connection exists whenever the drinking water system is or could be connected to any non-potable source. If cross connections are not properly protected and there is a drop in pressure, untreated sources and dirt can be pulled into household plumbing systems.

The State of Illinois and the City of Evanston require mandatory backflow protection on certain households and facilities where high health-hazard-type cross connections are normally found. Underground lawn sprinkling systems, fire protection systems, hospitals and health clinics, mortuaries, laboratories, food and beverage processing and car washes are just a few of the locations where backflow prevention is necessary to protect the quality of our public water supply.

In 2008, the Utilities Department hired a plumbing inspector to manage the City's cross connection control program. Since that time, over 3,000 backflow prevention devices have been added to the City's inventory and are now regularly inspected for compliance with State and City codes. An annual tracking system enables the City to ensure these devices are properly maintained throughout their life cycle. This helps keep the high quality drinking water produced by the City's water treatment plant safe to drink after entering the water distribution system.

| Year | Backflow Prevention Devices<br>Certified Annually |
|------|---------------------------------------------------|
| 2010 | 2,292                                             |
| 2011 | 2,609                                             |
| 2012 | 2,786                                             |
| 2013 | 3,356                                             |
| 2014 | 3,644                                             |



# Metering

The Meter Division manages water meter reading and billing for Evanston's 14,500 retail water and sewer customers, working with the City's Collector's Office to process water/sewer bill payments and cross connection control fees. The Meter Division also coordinates with the Distribution Division to manage replacement of damaged and obsolete water meters, accuracy testing for large water meters, and service water shutoff and restoration. In 2013-2014, the Meter Division managed Evanston's migration to a new Advanced Metering Infrastructure (AMI) system, which has improved accuracy and efficiency of the water metering and billing processes. The AMI system also generates automated hourly meter reads and leak alerts for customers to help reduce water loss.

Evanston has been metering water consumption since at least the early 1920s, well before many communities in the Chicago area. Water rates established to pay for the 1914 water treatment plant were only \$0.16 per 1,000 gallons of metered water use! The City originally sent meter reading staff into every building in the City once a quarter to manually read water meters. Water metering technology has evolved considerably over the last 100 years. Current technology allows meter readings to be taken automatically every hour, with oncedaily, wireless upload of readings to a computerized billing system.



A Utilities Department employee installs a new remote water meter reading unit on the exterior of a home as part of the Advanced Metering Infrastructure (AMI) project. This unit makes it possible for meter readings to be transmitted via wireless network without City staff having to visit each property to manually read the meters.



Evanston's first female water meter readers, Dorothy Jay (left) and Marjorie Nantkes (right). They were hired in 1943 to replace men serving in World War II.



### **Automatic Metering Infrastructure (AMI) System**

### How it works:

- A Meter Information Unit (MIU) is attached to every water meter in Evanston. The MIU takes a meter reading once an hour and stores these readings for a full day. Each MIU broadcasts the readings once a day using a wireless transmitter.
- The Data Collector Unit (DCU) receives the meter readings from the MIUs. Evanston currently has 6 DCUs located on various buildings throughout the community. Each DCU sends its meter reading information to the Network Control System at the Water Treatment Plant on a daily basis.
- The Network Control System supports customer service and system management activities. It transfers the meter readings to the billing system to generate bi-monthly water and sewer bills for Evanston customers.
- The Network Control System monitors fluctuations in water usage, and sends leak alerts to the network administrator if a customer's real-time meter readings are significantly higher than historical usage trends.
- The AMI system includes an online portal where Evanston customers can monitor their water usage, compare usage trends under various weather conditions, and set up leak alerts of their own.

#### POSLYN P PAR Lincoln & Ridge 8 **ST** URNST NCOLN Central & Ewing ST YAVE EAVE PAR Å AVE UFAX V COLEAN ST 8 AVE. Ň 8 GRAN GRANTS NOYES ST <u>के</u> अ NOTE DR LEONARD ST Ň UDZAZ 3 ST AVE Dewen ( 횖 Foster & Dewey 5 Jan . LAKE MICHIGAN GREY ğ **B**NN HURCH AVE Elmwood & Lake Tower Location OWB AVE GREY AVE GRE Main Road THELN AVE ٨VE ¥. N/E ž DEMPSTER S ES BURN BO INA LDER Local Street 3 3 AVE 8 E ··· Railroad Water VENEY AVE ŝ City Boundary MAN ST ر کے ST ASHN South Tank MADISON ST MONROE 8 8 51 Madison & Custer AVE ∛ sr N N AVE. RD 30 51 OUTH OAKT USTIN ST 3 13 HULL TER ş MULFOR City of 1 inch = 0.5 mile **Evanston** OBSON S HOWARD ST HOWARD ST 0.25 1.5 2 ∃Mies Ě

# **Transmitter Tower Locations**

## **Water Meter Inventory**

| Meter Size | Number of Meters |
|------------|------------------|
| 5/8"       | 11,834           |
| 3/4"       | 845              |
| 1"         | 1,065            |
| 1.5"       | 252              |
| 2"         | 461              |
| 3"         | 55               |
| 4"         | 24               |
| 6"         | 3                |
| 8"         | 4                |
| Total      | 14,543           |
|            |                  |

Water is billed bi-monthly in units of 100 cubic feet (CCF). The minimum service charge every two months is based on water meter size as follows:

### **Water Rates for Evanston Customers**

Water is billed bi-monthly in units of 100 cubic feet (CCF). The minimum service charge every two months is based on water meter size as follows:

| Meter Size  | Minimum Charge<br>Effective 1/1/2014 |
|-------------|--------------------------------------|
| 5/8" & 3/4" | \$7.07                               |
| 1"          | \$14.12                              |
| 1 1⁄2"      | \$26.43                              |
| 2"          | \$41.61                              |
| 3"          | \$73.28                              |
| 4"          | \$117.39                             |
| 6"          | \$207.02                             |
| 8"          | \$350.42                             |

The minimum demand charge includes the first five hundred cubic feet (5 CCF) of water consumed every two months, which is roughly equivalent to 3,740 gallons of water.

Water usage over the minimum is billed at \$1.98 per CCF effective 1/1/2014. This is equivalent to a rate of \$2.65 per 1,000 gallons.

### **Water Customer Classes and Metered Usage**

**Billed by Category and Water Usage for 2014** 

| Category                 | Number of Accounts | 2014 Usage (CCF)* |
|--------------------------|--------------------|-------------------|
| Metered Water Services   |                    |                   |
| Single-Family            | 10,787             | 915,024           |
| Multi-Family             | 2,626              | 1,150,956         |
| Commercial               | 976                | 1,036,034         |
| Industry                 | 35                 | 11,627            |
| City                     | 32                 | 13,883            |
| Park                     | 53                 | 4,218             |
| School                   | 34                 | 35,631            |
| Subtotal                 | 14,543             | 3,167,373         |
| Unmetered Water Services |                    |                   |
| Fire Services**          | 454                | -                 |
| Totals                   | 14,997             | 3,167,373         |

Water Service Accounts by Category:



\* Water usage is metered in units of 100 cubic feet (CCF). 1 CCF is approximately 748 gallons

\*\* Fire services are not metered. They are billed a flat charge twice per year.



### Water Usage Breakdown for Evanston Customers

# Sewer

The Sewer Division manages the operation, inspection, maintenance, and repair of the City's sewer mains and structures (sewer manholes, catch basins, and stormwater inlets). This includes proactive programs such as sewer main and drainage structure cleaning, root cutting, and televised internal sewer main inspection; as well as responding to all reports of sewer backups and flooding. This division also inspects work done by contractors including sewer main lining and manhole rehabilitation. Sewer Division staff conduct regular inspection of sewer outfalls and other facilities throughout Evanston for compliance with the City's sewer system operating permits with the Illinois Environmental Protection Agency.

Much of Evanston's sewer system was constructed in the late 1800s to early 1900s. These pipes are far too small to convey both domestic sewage and stormwater runoff as they were intended to do. Beginning the early 1990s, in Evanston constructed a network of relief sewers, which are much larger and deeper than the original combined sewers. The relief sewers now convey most of the stormwater runoff, to avoid overwhelming the combined sewers during rain events. The relief sewers run to a number of drop shafts located along the North Shore Channel, where they discharge directly to the Metropolitan Water Reclamation District's (MWRD) deep tunnel system.



Sewer Division staff operate a sewer cleaning truck to remove debris from a catch basin.



This drop shaft was one of the starting points for a tunneling machine that installed Evanston's relief sewers as a part of the Long Range Sewer Program in 1992 – 2008. Relief sewers are installed at depths of up to 60 feet to efficiently collect and transport large volumes of stormwater without impacting customers and other utilities.

### **Sewer Revenues\***

|                     | 2013         | 2014         |
|---------------------|--------------|--------------|
| Operations          | \$13,494,318 | \$13,072,700 |
| Debt Proceeds       | \$4,375,796  | \$1,600,000  |
| Investment Earnings | \$1,270      | \$1,000      |
| Miscellaneous**     | \$876,234    | \$4,165      |
| Total Sewer Revenue | \$18,747,618 | \$14,677,865 |



\* Financial data are based on actual expenses and do not include audit adjustments such as depreciation and inventory. For audited financial records, see the Comprehensive Annual Financial Report for the City of Evanston, http://www.cityofevanston.org/transparency/budget-financial-reports/.

\*\* Miscellaneous Revenue includes fees, grants, and merchandise sales. The total is higher than normal in 2013 due to a one-time payment from MWRD to Evanston for repairs to an MWRD sewer line.

### **Sewer Operating & Maintenance Expenses\***

|                         | 2013         | 2014         |
|-------------------------|--------------|--------------|
| Sewer Operations        | \$2,026,860  | \$2,238,775  |
| Other Oper. Expenses    | \$23,100     | \$24,100     |
| Interfund Transfers     | \$602,399    | \$622,316    |
| Capital Outlay          | \$17,803     | \$47,500     |
| Annual Rehab Programs** | \$1,000,000  | \$2,635,000  |
| Debt Service            | \$11,542,640 | \$10,009,059 |
| Total                   | \$15,212,802 | \$15,576,750 |



\* Financial data are based on actual expenses and do not include audit adjustments such as depreciation and inventory. For audited financial records, see the Comprehensive Annual Financial Report for the City of Evanston, http://www.cityofevanston.org/transparency/budget-financial-reports/.

\*\*Includes CIPP sewer rehabilitation, drainage structure replacement, stormwater management improvements, and emergency sewer repairs

### **Major Combined Sewer System**

The combined sewer system is Evanston's original sewage collection system. Much of this system was constructed in the late 1800s to early 1900s. The system was intended to capture and convey both domestic sewage and stormwater runoff, though as early as the early 1900s the City experienced flooding and basement backups during rain storms because the combined sewer pipes were not large enough to handle stormwater. In the early 1990s, Evanston began constructing a relief sewer system to convey the majority of the stormwater runoff and lessen the risk of basement backups.



### **Major Relief Sewer System**

Starting as long ago as 1902, property owners in Evanston experienced sewage backing up into basement during significant rain events. In 1990, the City Council approved a Long Range Sewer Improvement Program to mitigate property damage caused by basement backups. As part of this program, a network of large diameter relief sewers was constructed between 1991 - 2008 at a cost of \$210 million. These pipes are larger and deeper than the combined sewers, and convey stormwater runoff and sewage overflows to avoid overwhelming the combined sewers.



### **Major Storm Sewer System**

The storms sewer system discharges directly to the North Shore Channel and Lake Michigan. It is only utilized during rain events to convey stormwater from the streets to the channel or the lake. Most of the storm sewers in southwest Evanston were installed in the late 1970s to early 1980s. The remainder of storm sewers in this area, as well as the storm sewers in north central and northeast Evanston, were installed between 1991-2008 as part of the Long Range Sewer Improvement Program. Evanston operates the storm sewer system under a special permit issued by the Illinois Environmental Protection Agency.



# **Sewer Mains**

#### System Data and Maintenance\*

| Sewer Length by Type | Pipe Length (miles) |        |        |        |        |
|----------------------|---------------------|--------|--------|--------|--------|
|                      | 2010                | 2011   | 2012   | 2013   | 2014   |
| Combined Sewer       | 142.91              | 143.60 | 143.78 | 143.93 | 143.85 |
| Relief Sewer         | 50.51               | 51.51  | 51.78  | 52.65  | 52.82  |
| Storm Sewer          | 16.11               | 16.21  | 16.21  | 16.31  | 16.31  |
| Total Length         | 209.53              | 211.32 | 211.77 | 212.89 | 212.98 |

| Sewer Installation           | Pipe Length (feet) |         |         |         |         |
|------------------------------|--------------------|---------|---------|---------|---------|
| and Maintenance              | 2010               | 2011    | 2012    | 2013    | 2014    |
| Installed (new)              | 430                | 424     | 239     | 1,682   | 0       |
| Replaced                     | 86                 | 0       | 0       | 0       | 0       |
| CIPP Rehabilitation (Lining) | 2,081              | 6,997   | 8,850   | 15,995  | 12,059  |
| Spot Repair                  | 1,845              | 3,280   | 1,183   | 4,804   | 780     |
| Clean - Hydroflush           | 262,451            | 247,195 | 242,791 | 180,309 | 136,679 |
| Clean - Root Cut             | 13,330             | 17,543  | 5,372   | 7,657   | 14,412  |
| Inspection - General         | 38,527             | 25,354  | 19,695  | 21,421  | 26,570  |
| Inspection - Televised       | 65,933             | 81,502  | 83,942  | 78,022  | 69,805  |
| Inspection - Storm-related** | 4,043              | 2,070   | 0       | 1,981   | 971     |



\* All work performed by Utilities Department except CIPP Rehabilitation (Lining).

\*\* Includes sewers installed as part of alley improvement projects.

\*\*\* Inspection of City sewer mains as a result of sewer surcharge during or after a wet weather event, and inspection of storm sewer outfalls into the North Shore Channel.

\*\*\*\* Mains of unknown age were installed prior to detailed record keeping on sewer installations.

# **Length of Sewer Mains**

#### **By Type and Diameter**

|          | Combined Sewer Relief Sewer |        | Storm Sewer |       |        |       |
|----------|-----------------------------|--------|-------------|-------|--------|-------|
| Diameter | Feet                        | Miles  | Feet        | Miles | Feet   | Miles |
| <6"      | 3,136                       | 0.59   | 243         | 0.05  | 0      | 0.00  |
| 6"       | 296                         | 0.06   | 0           | 0.00  | 0      | 0.00  |
| 8"       | 19,541                      | 3.70   | 9,851       | 1.87  | 2,177  | 0.41  |
| 9"       | 123,331                     | 23.36  | 7,229       | 1.37  | 1,229  | 0.23  |
| 10"      | 109,711                     | 20.78  | 26,169      | 4.96  | 10,441 | 1.98  |
| 12"      | 226,233                     | 42.85  | 24,894      | 4.71  | 9,883  | 1.87  |
| 14"      | 1,019                       | 0.19   | 0           | 0.00  | 0      | 0.00  |
| 15"      | 92,731                      | 17.56  | 5,649       | 1.07  | 5,249  | 0.99  |
| 16"      | 2,085                       | 0.39   | 6,097       | 1.15  | 724    | 0.14  |
| 18"      | 60,979                      | 11.55  | 16,511      | 3.13  | 7,695  | 1.46  |
| 20"      | 8,410                       | 1.59   | 127         | 0.02  | 0      | 0.00  |
| 21"      | 15,046                      | 2.85   | 2,747       | 0.52  | 1,910  | 0.36  |
| 22"      | 858                         | 0.16   | 0           | 0.00  | 0      | 0.00  |
| 24"      | 20,674                      | 3.92   | 46,353      | 8.78  | 15,959 | 3.02  |
| 27"      | 6,434                       | 1.22   | 6,373       | 1.21  | 3,240  | 0.61  |
| 30"      | 6,973                       | 1.32   | 19,107      | 3.62  | 3,913  | 0.74  |
| 33"      | 3,771                       | 0.71   | 1,309       | 0.25  | 482    | 0.09  |
| 36"      | 19,769                      | 3.74   | 18,386      | 3.48  | 6,730  | 1.27  |
| 39"      | 421                         | 0.08   | 0           | 0.00  | 0      | 0.00  |
| 40"      | 377                         | 0.07   | 0           | 0.00  | 0      | 0.00  |
| 42"      | 6,700                       | 1.27   | 12,266      | 2.32  | 3,570  | 0.68  |
| 45"      | 1,029                       | 0.19   | 0           | 0.00  | 0      | 0.00  |
| 48"      | 13,402                      | 2.54   | 22,580      | 4.28  | 7,966  | 1.51  |
| 51"      | 1,104                       | 0.21   | 0           | 0.00  | 0      | 0.00  |
| 54"      | 1,985                       | 0.38   | 3,159       | 0.60  | 609    | 0.12  |
| 57"      | 784                         | 0.15   | 0           | 0.00  | 0      | 0.00  |
| 60"      | 7,202                       | 1.36   | 4,916       | 0.93  | 3,633  | 0.69  |
| 72"      | 4,114                       | 0.78   | 11,661      | 2.21  | 0      | 0.00  |
| 78"      | 0                           | 0.00   | 5,440       | 1.03  | 0      | 0.00  |
| 84"      | 0                           | 0.00   | 88          | 0.02  | 0      | 0.00  |
| 96"      | 0                           | 0.00   | 2,366       | 0.45  | 0      | 0.00  |
| 108"     | 0                           | 0.00   | 5,025       | 0.95  | 0      | 0.00  |
| 113"     | 0                           | 0.00   | 9,275       | 1.76  | 0      | 0.00  |
| 120"     | 0                           | 0.00   | 7,340       | 1.39  | 0      | 0.00  |
| Unknown  | 1,844                       | 0.35   | 2,833       | 0.54  | 691    | 0.13  |
| Totals   | 759,955                     | 143.93 | 277,992     | 52.65 | 86,102 | 16.31 |

Total Sewer Main Length: 212.89 miles

# **Sewer Structures**

#### System Data and Maintenance

| Number of        |        |        |        |        |        |
|------------------|--------|--------|--------|--------|--------|
| Sewer Structures | 2010   | 2011   | 2012   | 2013   | 2014   |
| Manholes         | 5,453  | 5,507  | 5,532  | 5,561  | 5,566  |
| Inlets           | 2,826  | 2,902  | 2,927  | 2,973  | 2,974  |
| Catch Basins     | 6,217  | 6,159  | 6,179  | 6,203  | 6,208  |
| Total            | 14,496 | 14,568 | 14,638 | 14,737 | 14,748 |
|                  |        |        |        |        |        |
| Sewer Structure  |        |        |        |        |        |

| Installation & Maintenand | 2010  | 2011  | 2012  | 2013  | 2014  |
|---------------------------|-------|-------|-------|-------|-------|
| Installed (new)           | 3     | 7     | 2     | 16    | 1     |
| Replaced                  | 17    | 12    | 39    | 5     | 21    |
| Repair                    | 119   | 96    | 133   | 87    | 55    |
| Clean                     | 2,750 | 2,428 | 4,109 | 2,732 | 3,181 |
| Inspect - General         | 325   | 286   | 411   | 327   | 161   |
| Inspect - Storm-Related*  | 562   | 835   | 479   | 1001  | 985   |

\* Inspection of City drainage structures as a result of street or alley flooding during or after a wet weather event.

| Description             | 2010        | 2011        | 2012        | 2013        | 2014        |
|-------------------------|-------------|-------------|-------------|-------------|-------------|
| Sewer Mains             | \$414,913   | \$616,921   | \$413,919   | \$449,960   | \$355,398   |
| Sewer Structures        | \$415,475   | \$474,164   | \$615,415   | \$423,665   | \$353,667   |
| Equip/Facility Maint.   | \$164,813   | \$208,299   | \$161,460   | \$176,489   | \$87,884    |
| Assist W&S Divisions    | \$62,576    | \$49,930    | \$45,855    | \$48,692    | \$73,275    |
| Snow & Ice Removal      | \$149,395   | \$132,370   | \$31,396    | \$66,675    | \$243,207   |
| Assist Contractors      | \$3,190     | \$8,847     | \$18,240    | \$39,542    | \$18,681    |
| Assist Other City Depts | \$29,250    | \$29,093    | \$57,269    | \$13,569    | \$35,943    |
| Safety & Training       | \$10,973    | \$15,857    | \$21,321    | \$15,233    | \$18,759    |
| Miscellaneous           | \$12,598    | \$9,799     | \$5,966     | \$6,808     | \$13,868    |
| JULIE Locates           | \$1,622     | \$2,155     | \$1,300     | \$135       | \$553       |
| Total                   | \$1,264,804 | \$1,547,437 | \$1,372,141 | \$1,240,768 | \$1,201,233 |

### **Breakdown of In-House Maintenance Costs\***



\* All work completed by Utilities Department staff unless otherwise noted.

\*\* Costs fluctuate from year to year due to changes in maintenance needs and prioritization of repair projects.

# **Sewer Mains Rehabilitated (Lined)**

The Utilities Department manages an annual sewer improvement program, with the goal of rehabilitating at least 1.5 miles of combined sewer mains annually (minimum 1% annual system-wide renewal rate).

